\documentclass[9pt, a4 paper, printwatermark]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \renewcommand{\familydefault}{\sfdefault} \usepackage{titlesec} \titleformat{\paragraph}{\normalfont\normalsize\bfseries}{\theparagraph}{1em}{} \titlespacing*{\paragraph}{0pt}{3.25ex plus 1ex minus .2ex}{1.5ex plus .2ex} \setcounter{secnumdepth}{4} \setcounter{tocdepth}{4} \usepackage[margin=1.5cm]{geometry} \newcommand{\sectionbreak}{\clearpage} \usepackage{mathtools} \usepackage{amsmath} \usepackage{amssymb} \usepackage{breqn} %used for dmath \usepackage[normalem]{ulem} \setlength{\parindent}{0pt} \usepackage{graphicx} \usepackage{array} \usepackage{longtable} \usepackage[dvipsnames,table]{xcolor} \definecolor{violet}{RGB}{112, 48, 160} \usepackage{physics} \usepackage{textcomp} \usepackage{gensymb} \usepackage{parskip} %instead of using \newline or \\ for line breaks simply insert an empty line \usepackage[none]{hyphenat} \usepackage[colorlinks=true, linkcolor={violet}, final=true]{hyperref} %list package last \title{WEM Metering, Settlement \& Prudential Calculations} \author{Australian Energy Market Operator} \date{Applicable Trading Days: 20 November 2024\\ Version 8.0\\ Version published: 11 November 2024} \begin{document} \maketitle Disclaimer: This document or the information in it may be subsequently updated or amended. This document does not constitute legal or business advice, and should not be relied on as a substitute for obtaining detailed advice about the Wholesale Electricity Market Rules or any other applicable laws, procedures or policies. AEMO has made every effort to ensure the quality of the information in this document but cannot guarantee its accuracy or completeness. Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this document: \begin{itemize} \item make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this document; and \item are not liable (whether by reason of negligence or otherwise) for any statements or representations in this document, or any omissions from it, or for any use or reliance on the information in it. \end{itemize} \clearpage \section*{Version Control} A major version change occurs when the WEM Rules or WEM Procedures require changes to the equations from a particular Trading Day onward. A minor version change may occur for editorial changes, manifest errors or implementation changes that will apply to the same Trading Day period as dictated by the major version. \begin{longtable}{|p{1.3cm}|p{8.6cm}|p{3.1cm}|p{3.2cm}|} \rowcolor{violet} \color{white}Version & \color{white}Changes & \color{white}Author(s) & \color{white}Approver \\ \hline \endhead 1.0 & Original publication consistent with WEM Rules effective 1 September 2019. & Stuart MacDougall & Mark Katsikandarakis \\ \hline 1.1 & New functionality added to distinguish between prudentials and settlements. \newline Update of Interest formulae for settlements. \newline Inclusion of Additional Repaid Amounts to be compliant with WEM Rule 9.24.2(b). \newline Correction of SOMS\_F\_I(f, i) formulae for the Notional Wholesale Meter. \newline Minor changes in formulae or invocation to improve performance. & Stuart MacDougall & Mark Katsikandarakis \\ \hline 2.0 & Consequential changes due to new WEM Rules effective 22 February 2020. & Stuart MacDougall & Mark Katsikandarakis \\ \hline 3.0 & Consequential changes due to Coordinator fees in new WEM Rules effective 1 July 2021. & Lisa Laurie & Mark Katsikandarakis \\ \hline 4.0 & Consequential changes due to new WEM Rules effective 1 October 2021. & Stuart MacDougall & Mark Katsikandarakis \\ \hline 4.1 & Inclusion of Default Levy Adjustment to be compliant with WEM Rule 9.24.9(e). & Lisa Laurie & Mark Katsikandarakis \\ \hline 5.0 & Publication consistent with WEM Reform Rules effective 1 October 2023. & Stuart MacDougall \newline Lisa Laurie & Nicholas Nielsen \\ \hline 5.1 & Consequential changes due to Market Suspension WEM Amending Rules effective 1 October 2023. & Lisa Laurie & Nicholas Nielsen \\ \hline 5.2 & Inclusion of Reserve Capacity Obligation Quantity (RCOQ) estimation for prudentials. \newline Minor changes to Variable Categorisation to include Invoice line item descriptions and moved to new section. & Lisa Laurie & Nicholas Nielsen \\ \hline 6.0 & Consequential changes due to WEM Amendment (Reserve Capacity Reform) Rules 2023 Schedule 1 effective 13 December 2023: Capacity Rebate removed, SRCC charges updated and Capacity Provider Payment updated. & Lisa Laurie & Nicholas Nielsen \\ \hline 7.0 & Consequential changes due WEM Amendment (Miscellaneous Amendments No.3) Rules 2024 Schedule 2 effective 7 October 2024: SRCC charges and NCESS charges updated. & Lisa Laurie & Nicholas Nielsen \\ \hline 8.0 & Consequential changes due to WEM Amendment (FCESS Cost Review) Rules 2024 effective 20 November 2024: BESSEM(di) and MOP\_F\_DI(f, di) definitions updated. Energy Uplift Price, Minimum RoCoF Control Service charges, and FCESS Uplift Payments updated. FCESS Enablement Losses removed. Zero Sum Groups updated. & Lisa Laurie & Lauren Ashby \\ \hline \end{longtable} \clearpage {\hypersetup{linkcolor=black} \tableofcontents } \newpage \section{Introduction} The purpose of this document is to: \begin{itemize} \item outline WEM Metering, Settlement and Prudential calculations as equations; \item provide additional context or structure equations in such a way that assists in understanding; and \item outline the formulation of a system that could be used to perform both settlement and prudential functions. \end{itemize} This document defines many variables that are used in equations. Each variable will have the following attributes stated to assist in understanding: \begin{longtable}{|p{2.9cm}|p{9.2cm}|p{4.5cm}|} \rowcolor{violet} \color{white}Attribute & \color{white}Explanation & \color{white}Example \\ \hline \endhead Variable & The name of the variable & $STEMP\_G\_I$\\ \hline Units & \$, \{\}, MW, MWh, MWs, \$/MW, \$/MWh, Flag, \degree C, Hz/500ms & \$/MWh\\ \hline Scope (SC) & Tranche (T), Channel (CH), NMI (N), Contract(C), SESSM Award (SA), Essential System Service (E), Facility-Essential System Service (FE), Network Contingency (NC), Facility-Network Contingency (FNC), Capacity Credit Allocation (A), Separately Certified Component (SCC), Facility (F), Participant (P), Global (G) & G\\ \hline Granularity (GR) & Dispatch Interval (DI), Trading Interval (I), Trading Day (D), Trading Week (W*), Trading Month (M), Capacity Year (CY), Financial Year (FY), Independent from time (X) & I\\ \hline Rule & WEM Rule reference & 6.9.7\\ \hline Description & A description of the variable & STEM Clearing Price in Trading Interval i\\ \hline Ref & Either the equation number where it is defined in this document, or 'I' to denote an input & I\\ \hline \end{longtable} * Trading Week granularity will include a numeric suffix that indicates on which day of the week the Trading Week commences on i.e. 0 = Sunday, 1 = Monday, ... 4 = Thursday etc. This suffix will be included where the granularity is used but not in the variable name e.g. $ESTIMATIONFlag\_G\_W(w)$ and not $ESTIMATIONFlag\_G\_W0(w)$. Granularity has a strict hierarchy: a Capacity Year is comprised of Trading Months which are comprised of Trading Days which are comprised of Trading Intervals which are comprised of Dispatch Intervals. Some variables have no time component, for example, they relate purely to a contract. In this instances the granularity is denoted as X. This hierarchy is represented in Figure 1. When defining a variable, it will always be defined for its granularity. For example, the variable $IRCR\_P\_M(p, m)$ is defined for a particular Trading Month m. It will only be defined by variables with a granularity of Trading Month or coarser. However, when the variable is used to define other equations it may be expressed using a granularity finer than its granularity, for example $IRCR\_P\_M(p, d)$. When the variable is expressed like this, it is implicit that it refers to the Trading Month m, in which Trading Day d falls. A similar hierarchy (and convention) is adopted for scopes as illustrated by Figure 2. \newpage Figure 1: Granularity hierarchy \begin{center} \includegraphics[width=14cm]{GranularityHierarchy.png} \end{center} Figure 2: Scope hierarchy \begin{center} \includegraphics[width=15cm]{ScopeHierarchy.png} \end{center} \section{Defined Terms, Sets and Associations} Defined terms are used throughout the rules. These defined terms often convey specific information, for example the term Scheduled Facility requires the facility to be registered with AEMO as outlined in the definition. Similarly, some specific calculations only apply, or are interpreted based on these defined terms. In the implementation, these defined terms are often represented as a set of Facilities (or Participants) that meet the definition of the defined term. Furthermore, there are often associations between defined terms within the rules, for example Facilities are associated to participants through registration. This document defines all sets with the following conventions: \begin{itemize} \item The definition of each set variable is always Global and for a Trading Day and therefore the variable name omits information about scope and granularity. For example the set of Scheduled Facilities in Trading Day d is represented as $SF(d)$, rather than being named $SF\_G\_D(d)$. \item Subsets are defined by adding a scope argument. For example $SF(p, d)$ represents the subset of $SF(d)$ associated with participant p. \end{itemize} \subsection{Participant Sets} \subsubsection{Axiomatic Participant Sets in AEMO systems} Calculations defined in the rules depend on different sets of participants. The participant sets outlined below are considered to be axiomatic, or the base sets, upon which all other sets will be created. These base sets are defined in terms of how AEMO's systems have been created. Sets which are calculated later are often sets of participants which are defined in the rules, and in these instances the rule reference is provided. \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead WEMS\_MP(d) & \{\} & G & D & & Set of participants with MP participant class in WEMS in Trading Day d & I\\ \hline WEMS\_NO(d) & \{\} & G & D & & Set of participants with NO participant class in WEMS in Trading Day d & I\\ \hline WEMS\_PREG(d) & \{\} & G & D & & Set of participants registered in WEMS in Trading Day d & I\\ \hline \end{longtable} \subsubsection{Sets of Rule Participant classes} The following are classes of Rule Participants [MR 2.28.1]: \begin{itemize} \item Network Operator (NO) \item Market Participant (MP) \item AEMO (AEMO) \end{itemize} The diagram below shows the relationship between Rule Participant classes (purple) and other sets of participants (green). \begin{center} \includegraphics[width=13cm]{ParticipantSets} \end{center} These sets are defined as follows: \begin{dmath} \label{P_M} P\_M(m) = \displaystyle \bigcup_{d \in D(m)} P(d) \end{dmath} \begin{dmath} \label{P_CY} P\_CY(cy) = \displaystyle \bigcup_{d \in D\_CY(cy)} P(d) \end{dmath} \begin{dmath} \label{P} P(d) = COORDINATOR(d) \cup ERA(d) \cup RP(d) \end{dmath} \begin{dmath} \label{COORDINATOR} COORDINATOR(d) = \{COE\} \end{dmath} \begin{dmath} \label{ERA} ERA(d) = \{ERA\} \end{dmath} \begin{dmath} \label{WPNTWK} WPNTWK(d) = \{WPNTWK\} \end{dmath} \begin{dmath} \label{RP} RP(d) = MP(d) \cup NO(d) \cup AEMO(d) \end{dmath} \begin{dmath} \label{MP} MP(d) = WEMS\_PREG(d) \cap WEMS\_MP(d) \end{dmath} \begin{dmath} \label{AEMO} AEMO(d) = \{IMOWA\} \end{dmath} \begin{dmath} \label{NO} NO(d) = WEMS\_PREG(d) \cap WEMS\_NO(d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline P\_CY(cy) & \{\} & G & CY & & Set of participants (Rule Participants, ERA and the Coordinator) in Capacity Year cy & (\ref{P_CY})\\ \hline P(d) & \{\} & G & D & Ch 11 & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline COORDINATOR(d) & \{\} & G & D & Ch 11 & Set containing the Coordinator & (\ref{COORDINATOR})\\ \hline ERA(d) & \{\} & G & D & Ch 11 & Set containing the ERA & (\ref{ERA})\\ \hline WPNTWK(d) & \{\} & G & D & Ch 11 & Set containing Western Power & (\ref{WPNTWK})\\ \hline RP(d) & \{\} & G & D & Ch 11 & Set of Rule Participants in Trading Day d & (\ref{RP})\\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline AEMO(d) & \{\} & G & D & Ch 11 & Set containing the AEMO & (\ref{AEMO})\\ \hline NO(d) & \{\} & G & D & Ch 11 & Set containing Network Operators in Trading Day d & (\ref{NO})\\ \hline WEMS\_MP(d) & \{\} & G & D & & Set of participants with MP participant class in WEMS in Trading Day d & I\\ \hline WEMS\_NO(d) & \{\} & G & D & & Set of participants with NO participant class in WEMS in Trading Day d & I\\ \hline WEMS\_PREG(d) & \{\} & G & D & & Set of participants registered in WEMS in Trading Day d & I\\ \hline D(w) & \{\} & G & W0 & Ch 11 & Set of Trading Days in Trading Week w & I\\ \hline D\_CY(cy) & \{\} & G & CY & Ch 11 & Set of Trading Days in Capacity Year cy & I\\ \hline \end{longtable} \subsection{Facility Sets} \subsubsection{Axiomatic Facility Sets in AEMO systems} \label{FacilitySets} Calculations defined in the rules depend on different sets of Facilities. The Facility sets outlined below are considered to be axiomatic, or the base sets, upon which all other sets will be created. These base sets are defined in terms of how AEMO's systems have been created. Sets which are calculated later are often sets of Facilities which are defined in the rules, and in these instances the rule reference is provided. \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead WEMS\_DSP(d) & \{\} & G & D & & Set of Facilities with a DSP WEMS Type in Trading Day d & I\\ \hline WEMS\_SF(d) & \{\} & G & D & & Set of Facilities with a SF WEMS Type in Trading Day d & I\\ \hline WEMS\_SSF(d) & \{\} & G & D & & Set of Facilities with a SSF WEMS Type in Trading Day d & I\\ \hline WEMS\_NSF(d) & \{\} & G & D & & Set of Facilities with a NSF WEMS Type in Trading Day d & I\\ \hline WEMS\_IL(d) & \{\} & G & D & & Set of Facilities with a IL WEMS Type in Trading Day d & I\\ \hline WEMS\_N(d) & \{\} & G & D & & Set of Facilities with a N WEMS Type in Trading Day d & I\\ \hline WEMS\_NDL(d) & \{\} & G & D & & Set of Facilities with a NDL WEMS Type in Trading Day d & I\\ \hline NDL\_MTR(d) & \{\} & G & D & & Set of Non-Dispatchable Loads with interval meters that are not in WEMS in Trading Day d & I\\ \hline WEMS\_FREG(d) & \{\} & G & D & & Set of Facilities with a registered status in WEMS in Trading Day d & I\\ \hline WEMS\_IM(d) & \{\} & G & D & & Set of Facilities with an intermittent load status in WEMS in Trading Day d & I\\ \hline WEMS\_EG(d) & \{\} & G & D & & Set of Facilities in WEMS that serve an Intermittent Load in Trading Day d & I\\ \hline NOINTMETER(d) & \{\} & G & D & & Set of Facilities in WEMS for which no interval meter exists in Trading Day d & I\\ \hline CCF(d) & \{\} & G & D & Ch 11 & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline RCM\_SF(d) & \{\} & G & D & & Set of Facilities with an indicative SF RCM Type in Trading Day d & I\\ \hline RCM\_SSF(d) & \{\} & G & D & & Set of Facilities with an indicative SSF RCM Type in Trading Day d & I\\ \hline RCM\_NSF(d) & \{\} & G & D & & Set of Facilities with an indicative NSF RCM Type in Trading Day d & I\\ \hline RCM\_DSP(d) & \{\} & G & D & & Set of Facilities with an indicative DSP RCM Type in Trading Day d & I\\ \hline \end{longtable} \newpage \subsubsection{Sets of Facility Technology Types and Facility Classes} The following are Facility Technology Types [MR 2.29.1]: \begin{itemize} \item distribution system (DX) \item transmission system (TX) \item Intermittent Generating System (IG) \item Non-Intermittent Generating System (NIG) \item Electric Storage Resource (ESR) \item Load (LOAD) \end{itemize} The following are Facility Classes [MR 2.29.1A]: \begin{itemize} \item Network (NTWK) \item Scheduled Facility (SF) \item Semi-Scheduled Facility (SSF) \item Non-Scheduled Facility (NSF) \item Interruptible Load (IRL) \item Demand Side Programme (DSP) \end{itemize} These sets are defined as follows. \begin{dmath} \label{DSP} DSP(d) = WEMS\_FREG(d) \cap WEMS\_DSP(d) \end{dmath} \begin{dmath} \label{indDSP} indDSP(d) = \overline{WEMS\_FREG(d)} \cap RCM\_DSP(d) \end{dmath} \begin{dmath} \label{SF} SF(d) = WEMS\_FREG(d) \cap WEMS\_SF(d) \end{dmath} \begin{dmath} \label{indSF} indSF(d) = \overline{WEMS\_FREG(d)} \cap RCM\_SF(d) \end{dmath} \begin{dmath} \label{SSF} SSF(d) = WEMS\_FREG(d) \cap WEMS\_SSF(d) \end{dmath} \begin{dmath} \label{indSSF} indSSF(d) = \overline{WEMS\_FREG(d)} \cap RCM\_SSF(d) \end{dmath} \begin{dmath} \label{NSF} NSF(d) = WEMS\_FREG(d) \cap WEMS\_NSF(d) \end{dmath} \begin{dmath} \label{indNSF} indNSF(d) = \overline{WEMS\_FREG(d)} \cap RCM\_NSF(d) \end{dmath} \begin{dmath} \label{IRL} IRL(d) = WEMS\_FREG(d) \cap WEMS\_IL(d) \end{dmath} \begin{dmath} \label{NDL_WEMS} NDL\_WEMS(d) = WEMS\_FREG(d) \cap WEMS\_NDL(d) \end{dmath} \begin{dmath} \label{NOTIONAL} NOTIONAL(d) = \{NOTIONAL\} \end{dmath} \begin{dmath} \label{NTWK} NTWK(d) = WEMS\_FREG(d) \cap WEMS\_N(d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead DSP(d) & \{\} & G & D & Ch 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline indDSP(d) & \{\} & G & D & Ch 11 & Set of unregistered Facilities with an indicative Facility Class of Demand Side Programme in Trading Day d & (\ref{indDSP})\\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline indSF(d) & \{\} & G & D & Ch 11 & Set of unregistered Facilities with an indicative Facility Class of Scheduled Facility in Trading Day d & (\ref{indSF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline indSSF(d) & \{\} & G & D & Ch 11 & Set of unregistered Facilities with an indicative Facility Class of Semi-Scheduled Facility in Trading Day d & (\ref{indSSF}) \\ \hline NSF(d) & \{\} & G & D & Ch 11 & Set of Non-Scheduled Facilities in Trading Day d & (\ref{NSF}) \\ \hline indNSF(d) & \{\} & G & D & Ch 11 & Set of unregistered Facilities with an indicative Facility Class of Non-Scheduled Facility in Trading Day d & (\ref{indNSF}) \\ \hline IRL(d) & \{\} & G & D & Ch 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline NDL\_WEMS(d) & \{\} & G & D & & Set of Non-Dispatchable Loads in WEMS registration in Trading Day d & (\ref{NDL_WEMS})\\ \hline NOTIONAL(d) & \{\} & G & D & Ch 11 & Set containing the Notional Wholesale Meter & (\ref{NOTIONAL})\\ \hline NTWK(d) & \{\} & G & D & Ch 11 & Set of Networks in Trading Day d & (\ref{NTWK})\\ \hline WEMS\_FREG(d) & \{\} & G & D & & Set of Facilities with a registered status in WEMS in Trading Day d & I\\ \hline WEMS\_DSP(d) & \{\} & G & D & & Set of Facilities with a DSP WEMS Type in Trading Day d & I\\ \hline RCM\_DSP(d) & \{\} & G & D & & Set of Facilities with an indicative DSP RCM Type in Trading Day d & I\\ \hline WEMS\_SF(d) & \{\} & G & D & & Set of Facilities with a SF WEMS Type in Trading Day d & I\\ \hline RCM\_SF(d) & \{\} & G & D & & Set of Facilities with an indicative SF RCM Type in Trading Day d & I\\ \hline WEMS\_SSF(d) & \{\} & G & D & & Set of Facilities with a SSF WEMS Type in Trading Day d & I\\ \hline RCM\_SSF(d) & \{\} & G & D & & Set of Facilities with an indicative SSF RCM Type in Trading Day d & I\\ \hline WEMS\_NSF(d) & \{\} & G & D & & Set of Facilities with a NSF WEMS Type in Trading Day d & I\\ \hline RCM\_NSF(d) & \{\} & G & D & & Set of Facilities with an indicative NSF RCM Type in Trading Day d & I\\ \hline WEMS\_IL(d) & \{\} & G & D & & Set of Facilities with a IL WEMS Type in Trading Day d & I\\ \hline WEMS\_N(d) & \{\} & G & D & & Set of Facilities with a N WEMS Type in Trading Day d & I\\ \hline WEMS\_NDL(d) & \{\} & G & D & & Set of Facilities with a NDL WEMS Type in Trading Day d & I\\ \hline NDL\_MTR(d) & \{\} & G & D & & Set of Non-Dispatchable Loads with interval meters that are not in WEMS in Trading Day d & I\\ \hline \end{longtable} \newpage \subsubsection{Other Facility Sets} Additional sets of Facilities are required by the rules and are defined below. \begin{dmath} \label{REG_F} REG\_F(d) = DSP(d) \cup SF(d) \cup SSF(d) \cup NSF(d) \cup IRL(d) \cup NTWK(d) \end{dmath} \begin{dmath} \label{NDL} NDL(d) = NDL\_WEMS(d) \cup NDL\_MTR(d) \cup NOTIONAL(d) \end{dmath} \begin{dmath} \label{Typical_REGF} Typical\_REGF(d) = (SF(d) \cup SSF(d) \cup NSF(d)) \cap \overline{EG(i)} \end{dmath} \begin{dmath} \label{IML} IML(d) = (IRL(d) \cup NDL\_WEMS(d)) \cap WEMS\_IM(d) \end{dmath} \begin{dmath} \label{EG} EG(d) = WEMS\_FREG(d) \cap WEMS\_EG(d) \end{dmath} \begin{longtable}{|p{3.8cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{2cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline NDL(d) & \{\} & G & D & Ch 11 & Set of Non-Dispatchable Loads in Trading Day d & (\ref{NDL})\\ \hline Typical\_REGF(d) & \{\} & G & D & & Set containing SFs, SSFs and NSFs, excluding any associated with an Intermittent Load for Trading Day d & (\ref{Typical_REGF})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline EG(d) & \{\} & G & D & 2.30B.2(a) & Set of Registered Facilities that serve an Intermittent Load in Trading Day d & (\ref{EG})\\ \hline DSP(d) & \{\} & G & D & Ch 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline IRL(d) & \{\} & G & D & Ch 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline NDL\_MTR(d) & \{\} & G & D & & Set of Non-Dispatchable Loads with interval meters that are not in WEMS in Trading Day d & I\\ \hline NDL\_WEMS(d) & \{\} & G & D & & Set of Non-Dispatchable Loads in WEMS registration in Trading Day d & (\ref{NDL_WEMS})\\ \hline NOTIONAL(d) & \{\} & G & D & Ch 11 & Set containing the Notional Wholesale Meter & (\ref{NOTIONAL})\\ \hline NSF(d) & \{\} & G & D & Ch 11 & Set of Non-Scheduled Facilities in Trading Day d & (\ref{NSF}) \\ \hline NTWK(d) & \{\} & G & D & Ch 11 & Set of Networks in Trading Day d & (\ref{NTWK})\\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline WEMS\_EG(d) & \{\} & G & D & & Set of Facilities in WEMS that serve an Intermittent Load in Trading Day d & I\\ \hline WEMS\_FREG(d) & \{\} & G & D & & Set of Facilities with a registered status in WEMS in Trading Day d & I\\ \hline WEMS\_IM(d) & \{\} & G & D & & Set of Facilities with an intermittent load status in WEMS in Trading Day d & I\\ \hline \end{longtable} \newpage \subsection{Other Sets} \begin{longtable}{|p{3.6cm}|p{0.8cm}|p{0.6cm}|p{0.6cm}|p{2.3cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead CCF(d) & \{\} & G & D & Ch 11 & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline COP(d) & \{\} & G & D & & Set of Facilities that are in Commercial Operation in Trading Day d & I \\ \hline ESR(d) & \{\} & G & D & Ch 11 & Set of Electric Storage Resources in Trading Day d & I\\ \hline LegacyIML(d) & \{\} & G & D & 1.48.2 & Set of Intermittent Loads that were treated by AEMO as an Intermittent Load on the day before New WEM Commencement Day, and continue to retain this status on Trading Day d & I\\ \hline NIMG(d) & \{\} & G & D & & Set of Non-Intermittent Generating Systems in Trading Day d & I\\ \hline PureLoad(d) & \{\} & G & D & App 2B 2.2(c)i & Set of Scheduled Facilities, Semi-Scheduled Facilities or Non-Scheduled Facilities that comprise only Loads in Trading Day d & I\\ \hline \end{longtable} \begin{longtable}{|p{3.6cm}|p{0.8cm}|p{0.6cm}|p{0.6cm}|p{2.3cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead ARL(d) & \{\} & G & D & Ch 11 & Set of SESSM Awards for Regulation Lower on Trading Day d & I\\ \hline ACR(d) & \{\} & G & D & Ch 11 & Set of SESSM Awards for Contingency Reserve Raise on Trading Day d & I\\ \hline ACL(d) & \{\} & G & D & Ch 11 & Set of SESSM Awards for Contingency Reserve Lower on Trading Day d & I\\ \hline ARCS(d) & \{\} & G & D & Ch 11 & Set of SESSM Awards for RoCoF Control Service on Trading Day d & I\\ \hline ARR(d) & \{\} & G & D & Ch 11 & Set of SESSM Awards for Regulation Raise on Trading Day d & I\\ \hline SRS(d) & \{\} & G & D & Ch 11 & Set of System Restart Service Contracts in Trading Day d & I \\ \hline NCESS(d) & \{\} & G & D & Ch 11 & Set of NCESS Contracts in Trading Day d & I \\ \hline SESSMDI(sa) & \{\} & SA & X & App 2C 2.3(c)i & Set of all Dispatch Intervals in the SESSM Service Timing for SESSM Award sa & I\\ \hline \end{longtable} \begin{longtable}{|p{3.6cm}|p{0.8cm}|p{0.6cm}|p{0.6cm}|p{2.3cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead B(d) & \{\} & G & D & & Set of all generation metering channels associated with NMIs in Trading Day d & I\\ \hline E(d) & \{\} & G & D & & Set of all consumption metering channels associated with NMIs in Trading Day d & I\\ \hline NS(d) & \{\} & G & D & 2.30B.10(a)ii & Set of all connection points (NMIs) measuring an Intermittent Load which are separately metered (and settled) in Trading Day d & I\\ \hline DSPNMI(d) & \{\} & G & D & & Set of connection points which comprise a Demand Side Programme on Trading Day d & I\\ \hline \end{longtable} \begin{longtable}{|p{3.6cm}|p{0.8cm}|p{0.6cm}|p{0.6cm}|p{2.3cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead CCAM(f, d) & \{\} & F & D & & Set of Capacity Credit Allocations made by Facility f in Trading Day d & I\\ \hline CCAR(p, d) & \{\} & P & D & & Set of Capacity Credit Allocations received by participant p (from Facility f) in Trading Day d & I\\ \hline \end{longtable} \begin{longtable}{|p{3.6cm}|p{0.8cm}|p{0.6cm}|p{0.6cm}|p{2.3cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead PGST(d) & \{\} & G & D & 9.1.3 & Set of all variables which are payments to which GST applies in Trading Day d & I\\ \hline CGST(d) & \{\} & G & D & 9.1.3 & Set of all variables which are charges to which GST applies in Trading Day d & I\\ \hline \end{longtable} \begin{longtable}{|p{3.6cm}|p{0.8cm}|p{0.6cm}|p{0.6cm}|p{2.3cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead AF\_DI(di) & \{\} & G & DI & App 2A 2.3 & Set of applicable facilities in Dispatch Interval di & (\ref{AF_DI}) \\ \hline AFadditional\_DI(di) & \{\} & G & DI & App 2A 2.4 & Set of additional applicable facilities in Dispatch Interval di & (\ref{AFadditional_DI}) \\ \hline App2AF\_DI(di) & \{\} & G & DI & App 2A 2.1 & Set of facilities (identified in Appendix 2A 2.1) to be included in the runway share calculation in Dispatch Interval di & (\ref{App2AF_DI}) \\ \hline App2AFa(d) & \{\} & G & D & App 2A 2.1(a) & Set of facilities (identified in Appendix 2A 2.1(a)) to be included in the runway share calculation in Trading Day d & (\ref{App2AFa}) \\ \hline App2AFbc(d) & \{\} & G & D & App 2A 2.1(b), App 2A 2.1(c) & Set of facilities (identified in Appendix 2A 2.1(b) and 2.1(c)) to be included in the runway share calculation in Trading Day d & (\ref{App2AFbc}) \\ \hline App2AFb\_DI(di) & \{\} & G & DI & App 2A 2.1(b) & Set of facilities (identified in Appendix 2A 2.1(b)) to be included in the runway share calculation in Dispatch Interval di & (\ref{App2AFb_DI}) \\ \hline App2AFc\_DI(di) & \{\} & G & DI & App 2A 2.1(c) & Set of facilities (identified in Appendix 2A 2.1(c)) to be included in the runway share calculation in Dispatch Interval di & I \\ \hline App2AIML\_DI(di) & \{\} & G & DI & App 2A 2.1A & Set of facilities (identified in Appendix 2A 2.1A) to be included in the runway share calculation in Dispatch Interval di & (\ref{App2AIML_DI}) \\ \hline \end{longtable} \begin{longtable}{|p{3.6cm}|p{0.8cm}|p{0.6cm}|p{0.6cm}|p{2.3cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead NC\_DI(di) & \{\} & G & DI & App 2A 4.1 & Set of Network Contingencies that were taken into account when setting the Contingency Reserve Raise requirement in Dispatch Interval di & I \\ \hline CF\_NC\_DI(nc, di) & \{\} & NC & DI & App 2A 4.5(a) & Set of causer facilities that are applicable facilities or additional applicable facilities associated with Network Contingency nc in Dispatch Interval di & (\ref{CF_NC_DI}) \\ \hline F\_NC\_DI(nc, di) & \{\} & NC & DI & App 2A 4.5(a) & Set of Registered Facilities included in the Network Risk associated with Network Contingency nc in Dispatch Interval di & I \\ \hline LCSC(di) & \{\} & G & DI & Ch 11 & Set of Network Contingencies that set the Largest Credible Supply Contingency in Dispatch Interval di & I \\ \hline \end{longtable} \begin{longtable}{|p{3.6cm}|p{0.8cm}|p{0.6cm}|p{0.6cm}|p{2cm}|p{6.3cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead BDRR(di) & \{\} & G & DI & 9.9.9(e) & Set of Registered Facilities whose EOI Quantity is higher than it would otherwise be in Dispatch Interval di, as a result of a binding ramp rate constraint applied under clause 7.2.4(c) & I \\ \hline BESSEM(di) & \{\} & G & DI & 9.9.9(f) & Set of Registered Facilities whose EOI Quantity is constrained to its Enablement Minimum value in Dispatch Interval di, as a result of a binding Essential System Service Minimum Constraint applied under clause 7.8.5(b)(i) for a Frequency Co-optimised Essential System Service other than RoCoF Control Service & I\\ \hline BNCESS(di) & \{\} & G & DI & 9.9.9(g) & Set of Registered Facilities whose EOI Quantity is higher than it would otherwise would be in Dispatch Interval di, as a result of a binding Constraint Equation relating to an NCESS Contract under clause 5.9.1(b) & I\\ \hline \end{longtable} \begin{longtable}{|p{3.6cm}|p{0.8cm}|p{0.6cm}|p{0.6cm}|p{2cm}|p{6.3cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline D(w) & \{\} & G & W0 & Ch 11 & Set of Trading Days in Trading Week w & I\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline D\_M(m) & \{\} & G & M & Ch 11 & Set of Trading Days in Trading Month m & I\\ \hline D\_CY(cy) & \{\} & G & CY & Ch 11 & Set of Trading Days in Capacity Year cy & I\\ \hline PI4320a(i) & \{\} & G & I & & Set of Trading Intervals within the 90th Trading Day prior to Trading Interval i's Trading Day that form part of the 4320 Trading Intervals prior to and including Trading Interval i & I\\ \hline PI4320b(i) & \{\} & G & I & & Set of Trading Intervals within Trading Interval i's Trading Day that form part of the 4320 Trading Intervals prior to and including Trading Interval i & I\\ \hline PD89(d) & \{\} & G & D & & Set of 89 Trading Days prior to Trading Day d & I\\ \hline PI1440(i) & \{\} & G & I & & Set of 1440 Trading Intervals prior to and including Trading Interval i & I\\ \hline PITD(i) & \{\} & G & I & & Set of Trading Intervals in the same Trading Day as, but prior to, Trading Interval i & I\\ \hline PDITD(di) & \{\} & G & DI & & Set of Dispatch Intervals in the same Trading Day as, but prior to, Dispatch Interval di & I\\ \hline PD1000(d) & \{\} & G & D & & Set of 1000 Trading Days preceding (and excluding) Trading Day d & I\\ \hline ESROI(d) & \{\} & G & D & Ch 11 & Set of Electric Storage Resource Obligation Intervals applicable on Trading Day d & I \\ \hline INTDAYS1(w) & \{\} & G & W0 & 9.1.4 & Set of days from (and including) the settlement day associated with the original Settlement Statement up to (but excluding) settlement day for adjustment 1 Settlement Statement for Trading Week w & I\\ \hline INTDAYS2(w) & \{\} & G & W0 & 9.1.4 & Set of days from (and including) the settlement day associated with the original Settlement Statement up to (but excluding) settlement day for adjustment 2 Settlement Statement for Trading Week w & I\\ \hline INTDAYS3(w) & \{\} & G & W0 & 9.1.4 & Set of days from (and including) the settlement day associated with the original Settlement Statement up to (but excluding) settlement day for adjustment 3 Settlement Statement for Trading Week w & I\\ \hline EXPDAYS(d) & \{\} & G & D & & Set of Trading Days that have not yet had a Settlement Statement issued, up to and including Trading Day d-1 & I\\ \hline \end{longtable} \subsection{Associations} Associations are used to link two entities to each other. These associations are used in the document for the following purposes: \begin{itemize} \item To reference a variable or attribute that applies to the parent of a child by relying on the primary or additional associations listed below e.g. $RCP\_F\_D(T2F(t),d)$ is referring to the $RCP\_F\_D$ value for the Facility that is associated with tranche t on Trading Day d. \item To reference a Facility or NMI associated with an Intermittent Load by relying on the additional associations listed below e.g. $IML2EG(f, i)$ is referring to the Facility that is associated with the Embedded Generator that is associated with Intermittent Load f in Trading Interval i. \end{itemize} \subsubsection{Primary Associations} \begin{longtable}{|p{4cm}|p{2cm}|p{2cm}|p{8cm}|} \rowcolor{violet} \color{white}Association & \color{white}Child SC & \color{white}Parent SC & \color{white}Description \\ \hline \endhead F2P & F & P & Association between Facility f and participant p \\ \hline N2F & N & F & Association between NMI n and Facility f (excluding DSPs) \\ \hline SCC2F & SCC & F & Association between Separately Certified Component scc and Facility f \\ \hline CH2N & CH & N & Association between channel ch and NMI n \\ \hline C2P & C & P & Association between contract c and participant p \\ \hline A2F & A & F & Association between a Capacity Credit Allocation a and Facility f \\ \hline SA2FE & SA & FE & Association between SESSM Award sa and Facility f and Essential System Service e \\ \hline \end{longtable} \subsubsection{Additional Associations} \begin{longtable}{|p{4cm}|p{2cm}|p{2cm}|p{8cm}|} \rowcolor{violet} \color{white}Association & \color{white}Child SC & \color{white}Parent SC & \color{white}Description \\ \hline \endhead IML2EG & F & F & Association between Intermittent Load f and any embedded generator \\ \hline IML2NS & N & F & Association between Intermittent Load f and any connection points (NMIs) which are separately metered (and settled) \\ \hline A2PM & A & P & Association between Capacity Credit Allocation a and the Market Participant making the allocation \\ \hline A2PR & A & P & Association between Capacity Credit Allocation a and the Market Participant receiving the allocation \\ \hline T2F & T & F & Association between tranche t and the Facility associated with the tranche \\ \hline T2P & T & P & Associations between tranche t and the participant associated with the trance \\ \hline \end{longtable} \section{Metering Calculation Engine} Metering calculations are fundamental to settlement and prudential calculations. Due to the large volumes of data, metering calculations are separated from the main calculation engine.\\ Metered Schedules are calculated for: \begin{itemize} \item Non-Dispatchable Loads (excluding those represented by the Notional Wholesale Meter) \item Scheduled Facilities \item Semi-Scheduled Facilities \item Non-Scheduled Facilities \item Notional Wholesale Meter \end{itemize} In order to determine these Metered Schedules the following information is required: \begin{itemize} \item Connection point energy quantities \item Facility category \item Facility aggregation requirements \end{itemize} The purpose of this section is to define Sent Out Metered Schedules (non-loss adjusted energy) and Metered Schedules (loss adjusted energy) for each category of facility defined in the registration chapter. The Metered Schedules and Sent Out Metered Schedules for unregistered NDLs are the same as the connection point's Metered Schedules as defined previously. Intermittent Load facilities Metered Schedules do not use the same variables as all other facilities. These Metered Schedules are detailed in their own section.\\ The equations in the following sections incorporate the concept of Aggregated Facilities [MR 2.30], which is a Registered Facility with more than one connection point.\\ When estimating meter data, AEMO uses more general metering equations to incorporate estimation methodology. When actual data is available, the equations simplify to the previously outlined metering equations. The more general metering equations are detailed in the subsequent subsections. \subsection{Invocation} The following table outlines the invocation for the high-level calculations. \begin{longtable}{|p{8cm}|p{9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Scope Set \\ \hline \endhead $MS\_F\_I(n, i)$ & $\forall f \in SF(i) \cup SSF(i) \cup NSF(i) \cup NDL(i)$ \\ \hline $SOMS\_F\_I(f, i)$ & $\forall f \in SF(i) \cup SSF(i) \cup NSF(i) \cup NDL(i)$ \\ \hline \end{longtable} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline SOMS\_F\_I(f, i) & MWh & F & I & Ch 11 & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline NDL(d) & \{\} & G & D & Ch 11 & Set of Non-Dispatchable Loads in Trading Day d & (\ref{NDL})\\ \hline NSF(d) & \{\} & G & D & Ch 11 & Set of Non-Scheduled Facilities in Trading Day d & (\ref{NSF}) \\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline \end{longtable} \subsection{Connection Point Energy Quantities} Western Power is a Metering Data Agent and provides AEMO with: \begin{itemize} \item Meter standing data (Participant, TLF, DLF); and \item Meter energy data (kWh). \end{itemize} Each connection point is assigned a NMI (National Meter Identifier). For any single Trading interval, a NMI may have multiple meter channels that measure and store energy data. The type of data varies; however, the channels containing energy data relevant to AEMO are B channels which measure generation; and E channels which measure consumption. The image below shows a sample of standing data received from Western Power. In this example it shows that NMI 8001000266 had a TLF of TSAV, a DLF of QRT6, and a Financially Responsible Market Participant (FRMP) of ERMPOWER. \begin{center} \includegraphics[width=17cm]{StandingData} \end{center} \newpage The image below shows a sample of energy data received from Western Power. In this example it shows that NMI 8001000347 had 9.600 kWh of consumption in Trading Interval 03:30 on its E1 channel. \begin{center} \includegraphics[width=12cm]{MeterData} \end{center} Some specific items of note: \begin{itemize} \item Meter Standing Data only provides data at a specific point in time i.e. no historical data is stored in the file. Therefore AEMO's databases must consider how it will maintain historical information. \item The TLF is sent to AEMO against the TransmissionNodeIdentifier attribute. Market Participants (other than AEMO) receive files with the Transmission Network Identifier (TNI) in this field, and they do not receive TLFs. A TLF can be derived from a TNI and historical metering data. \item Each NMI $n$ has a non-loss adjusted energy quantity associated with it for every Trading Interval i. \item Facilities without an interval meter (i.e. SCADA-only facilities) have the identical NMI name and Facility name in AEMO's systems (e.g. $n = COLLIE\_G1$, $f = COLLIE\_G1$). \end{itemize} \begin{dmath} \label{MeterData_N_I} MeterData\_N\_I(n, i) = \begin{dcases} SCADA\_F\_I(n, i) & \text{for $n \in NOINTMETER(i)$}\\ netMQ\_N\_I(n, i) & \text{for $n \notin NOINTMETER(i)$}\\ \end{dcases} \end{dmath} \begin{dmath} \label{netMQ_N_I} netMQ\_N\_I(n, i) = \displaystyle \sum_{ch \in B(n, i)}MQ\_CH\_I(ch, i) - \sum_{ch \in E(n, i)}MQ\_CH\_I(ch, i) \end{dmath} \begin{dmath} \label{estMeterData_N_I} estMeterData\_N\_I(n, i) = MeterData\_N\_I(n, LDLP\_N\_I(n, i)) \times SF\_N\_I(n, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MeterData\_N\_I(n, i) & MWh & N & I & & Non-loss adjusted energy quantity for NMI n in Trading Interval i & (\ref{MeterData_N_I})\\ \hline netMQ\_N\_I(n, i) & MWh & N & I & & Net energy measured by NMI n in Trading Interval i, non-loss adjusted & (\ref{netMQ_N_I})\\ \hline estMeterData\_N\_I(n, i) & MWh & N & I & & Non-loss adjusted energy quantity (including estimation) for NMI n in Trading Interval i & (\ref{estMeterData_N_I})\\ \hline B(d) & \{\} & G & D & & Set of all generation metering channels associated with NMIs in Trading Day d & I\\ \hline E(d) & \{\} & G & D & & Set of all consumption metering channels associated with NMIs in Trading Day d & I\\ \hline MQ\_CH\_I(ch, i) & MWh & CH & I & & Energy measured by metering channel ch in Trading Interval i, non-loss adjusted & I\\ \hline NOINTMETER(d) & \{\} & G & D & & Set of Facilities in WEMS for which no Interval meter exists in Trading Day d & I\\ \hline SCADA\_F\_I(f, i) & MWh & F & I & 9.9.13 & Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & I\\ \hline \end{longtable} \subsection{Metered Schedules (including estimation)} Metered Schedules are required to be estimated for the purposes of determining a Market Participant's Outstanding Amount. When a Metered Schedule does not exist because data is yet to be provided by the Meter Data Agent, an estimation methodology is used to scale data from a similar period, depending on what data is available. The following sections outline: \begin{itemize} \item the estimation methodology consistent with the requirements in WEM Procedure: Prudential Requirements. \item how data statuses are used to indicate if data exists; \item how a similar interval is determined using a 'Like Day, Like Period' methodology; and \item how scaling factors are used. \end{itemize} \subsubsection{Standard Metered Schedules (including estimation)} Meter Schedules are determined or estimated based on what data is available. The general philosophy for what data to use is based on the following hierarchy as dictated by the WEM Procedure: Prudential Requirements: \begin{enumerate} \item Use $MeterData\_N\_I$ data for the entire Facility, if $MeterData\_N\_I$ data exists for any NMI associated with Facility f, in Trading Interval i \item Use SCADA energy data if it exists for Facility f, in Trading Interval i \item Use EOI Quantity if it exists for Facility f, in Trading Interval i \item Scale $MeterData\_N\_I$ data for Facility f in the most recent similar interval of Trading Interval i \end{enumerate} \begin{dmath} \label{MS_F_I} MS\_F\_I(f, i) = \begin{dcases} SOMS\_N\_I(f, i) \times TLF\_N\_D(f, i) \times DLF\_N\_D(f, i) & \text{for $f \in NDL\_MTR(i)$}\\ SOMS\_F\_I(f, i) \times TLF\_F\_D(f, i) \times DLF\_F\_D(f, i) & \scalebox{0.7}{\text{for $f \in Typical\_REGF(i) \cup (NDL\_WEMS(i) \cap \overline{IML(i)})$}}\\ MSIL\_F\_I(f, i) + MSEL\_F\_I(f, i) & \text{for $f \in IML(i)$}\\ MSEG\_F\_I(EG2IML(f, i), i) & \text{for $f \in EG(i)$}\\ -1 \times \sum_{f \in SF(i) \cup SSF(i) \cup NSF(i) \cup NDL \cap \overline{NOTIONAL(i)}} MS\_F\_I(f, i) & \text{for $f \in NOTIONAL(i)$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{SOMS_F_I} SOMS\_F\_I(f, i) = \begin{dcases} SOMS\_N\_I(f, i) & \text{for $f \in NDL\_MTR(i)$}\\ SOMStypical\_F\_I(f, i) & \scalebox{0.9}{\text{for $f \in Typical\_REGF(i) \cup (NDL\_WEMS(i) \cap \overline{IML(i)})$}}\\ SOMSIL\_F\_I(f, i) + SOMSEL\_F\_I(f, i) & \text{for $f \in IML(i)$}\\ SOMSEG\_F\_I(EG2IML(f, i), i) & \text{for $f \in EG(i)$}\\ \frac{MS\_F\_I(f, i)}{TLF\_F\_D(f, i) \times DLF\_F\_D(f, i)} & \text{for $f \in NOTIONAL(i)$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{SOMS_N_I} SOMS\_N\_I(n, i) = \begin{dcases} MeterData\_N\_I(n, i) & \text{if $AfterIMDFlag\_G\_D(i) = 1$ or $isData\_N\_I(n, i) > 0$}\\ estMeterData\_N\_I(n, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{SOMStypical_F_I} SOMStypical\_F\_I(f, i) = \begin{dcases} \sum_{n \in NMI(f, i)} MeterData\_N\_I(n, i) & \text{if $AfterIMDFlag\_G\_D(i) = 1$ or $isData\_F\_I(f, i) > 0$}\\ SCADA\_F\_I(f, i) & \text{elseif $SCADANullFlag\_G\_D(i) = 0$}\\ 0.5h \times SCADAEOI\_F\_I(f, i) & \text{elseif $EOINullFlag\_G\_D(i) = 0$}\\ \sum_{n \in NMI(f, i)} estMeterData\_N\_I(n, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline SOMS\_F\_I(f, i) & MWh & F & I & Ch 11 & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline SOMS\_N\_I(n, i) & MWh & N & I & Ch 11 & Sent Out Metered Schedule (including estimation) for NMI n in Trading Interval i & (\ref{SOMS_N_I})\\ \hline SOMStypical\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule (including estimation) for typical registered Facility f in Trading Interval i & (\ref{SOMStypical_F_I})\\ \hline AfterIMDFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when the Interval Meter Deadline has passed for the Trading Week of Trading Day d, and 0 otherwise & I\\ \hline DLF\_F\_D(f, d) & & F & D & Ch 11 & Distribution Loss Factor for Facility f for Trading Day d & I\\ \hline DLF\_N\_D(n, d) & & N & D & Ch 11 & Distribution Loss Factor for NMI n for Trading Day d & I\\ \hline EG(d) & \{\} & G & D & 2.30B.2(a) & Set of Registered Facilities that serve an Intermittent Load in Trading Day d & (\ref{EG})\\ \hline EOINullFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when EOI Quantities are unavailable for Trading Day d, and 0 otherwise & I\\ \hline estMeterData\_N\_I(n, i) & MWh & N & I & & Non-loss adjusted energy quantity (including estimation) for NMI n in Trading Interval i & (\ref{estMeterData_N_I})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline isData\_F\_I(f, i) & Flag & F & I & & Flag that is 1 when Facility f has energy data in Trading Interval i, and 0 otherwise & (\ref{isData_F_I})\\ \hline isData\_N\_I(n, i) & Flag & N & I & & Flag that is 1 when NMI n has energy data in Trading Interval i, and 0 otherwise & (\ref{isData_N_I})\\ \hline LDLP\_N\_I(n, i) & & N & I & & The interval used to determine scaled meter data for NMI n in Trading Interval i & (\ref{LDLP_N_I})\\ \hline MeterData\_N\_I(n, i) & MWh & N & I & & Non-loss adjusted energy quantity for NMI n in Trading Interval i & (\ref{MeterData_N_I})\\ \hline MSEG\_F\_I(f, i) & MWh & F & I & 9.5.2, 2.30B.10(c) i.3, ii.3, iii.3, iv.3 & Metered Schedule for the embedded generator associated with Intermittent Load Facility f in Trading Interval i & (\ref{MSEG_F_I})\\ \hline MSEL\_F\_I(f, i) & MWh & F & I & 9.5.2, 2.30B.10(c) i.2, ii.2, iii.2, iv.2 & Metered Schedule for the embedded load associated with Facility f in Trading Interval i & (\ref{MSEL_F_I})\\ \hline MSIL\_F\_I(f, i) & MWh & F & I & 9.5.2, 2.30B.10(c) i.1, ii.1, iii.1, iv.1 & Metered Schedule for the intermittent load associated with Facility f in Trading Interval i & (\ref{MSIL_F_I})\\ \hline NDL\_MTR(d) & \{\} & G & D & & Set of Non-Dispatchable Loads with interval meters that are not in WEMS in Trading Day d & I\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline SF\_N\_I(n, i) & & N & I & & Scaling Factor for NMI n in Trading Interval i & (\ref{SF_N_I})\\ \hline NOTIONAL(d) & \{\} & G & D & Ch 11 & Set containing the Notional Wholesale Meter & (\ref{NOTIONAL})\\ \hline SOMSEG\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the embedded generator associated with Intermittent Load Facility f in Trading Interval i & (\ref{SOMSEG_F_I})\\ \hline SOMSEL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the embedded load associated with Facility f in Trading Interval i & (\ref{SOMSEL_F_I})\\ \hline SOMSIL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the intermittent load associated with Facility f in Trading Interval i & (\ref{SOMSIL_F_I})\\ \hline SCADA\_F\_I(f, i) & MWh & F & I & 9.9.13 & Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & I\\ \hline SCADAEOI\_F\_I(f, i) & MW & F & I & & EOI Quantity of Facility f in Trading Interval i & I\\ \hline SCADANullFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when net generation quantities measured by SCADA are unavailable for Trading Day d, and 0 otherwise & I\\ \hline TLF\_F\_D(f, d) & & F & D & & Transmission Loss Factor for Facility f for Trading Day d & I\\ \hline TLF\_N\_D(n, d) & & N & D & & Transmission Loss Factor for NMI n for Trading Day d & I\\ \hline Typical\_REGF(d) & \{\} & G & D & & Set containing SFs, SSFs and NSFs, excluding any associated with an Intermittent Load for Trading Day d & (\ref{Typical_REGF})\\ \hline \end{longtable} \subsubsection{Intermittent Load Metered Schedules (including estimation)} An Intermittent Load comprises the following components that are all measured by the single connection point associated with the Intermittent Load: \begin{itemize} \item Intermittent load associated with Load f \item Embedded Load (non-Intermittent Load) that is non-Intermittent Load f \item Generation associated with a Registered Facility $IML2EG(f, d)$ \end{itemize} The Metered Schedule calculations are different depending on whether the Intermittent Load existed prior to the New WEM Commencement Day (Legacy Intermittent Load) or not (New Intermittent Load). The figure below is a graphical representation of this configuration.\\ \begin{center} \includegraphics[width=18cm]{IntermittentLoad} \end{center} \newpage The purpose of this section is to define the Metered Schedule Quantities for each of the components. To do this, various standing data relating to the Intermittent Load and the embedded generator is used; however, the first step is to perform the following preliminary calculations to derive $AMQ\_F\_I$.\\ Note, that the equations (\ref{NNMQ_F_I}), (\ref{NMQ_F_I}) and (\ref{NS_F_I}) refer to more generalised equations (\ref{estNNMQ_F_I}), (\ref{estNMQ_F_I}) and (\ref{estNS_F_I}) to handle prudentials as well as settlement.\\ The net metered quantity associated with the Intermittent Load is calculated:\\ \begin{dmath} \label{NNMQ_F_I} NNMQ\_F\_I(f, i) = \displaystyle \sum_{n \in NMI(f, i)} MeterData\_N\_I(n, i) \end{dmath} \begin{dmath} \label{estNNMQ_F_I} estNNMQ\_F\_I(f, i) = \displaystyle \sum_{n \in NMI(f, i)} estMeterData\_N\_I(n, i) \end{dmath} \begin{dmath} \label{NMQ_F_I} NMQ\_F\_I(f, i) = NNMQ\_F\_I(f, i) \times TLF\_F\_D(f, i) \times DLF\_F\_D(f, i) \end{dmath} \begin{dmath} \label{estNMQ_F_I} estNMQ\_F\_I(f, i) = estNNMQ\_F\_I(f, i) \times TLF\_F\_D(f, i) \times DLF\_F\_D(f, i) \end{dmath} The meter data associated with each individual NMI that is separately metered (and settled) associated with the Intermittent Load is calculated:\\ \begin{dmath} \label{NS_F_I} NS\_F\_I(f, i) = \displaystyle \sum_{n \in NS(f, i)} MeterData\_N\_I(n, i) \times TLF\_N\_D(n, i) \times DLF\_N\_D(n, i) \end{dmath} \begin{dmath} \label{estNS_F_I} estNS\_F\_I(f, i) = \displaystyle \sum_{n \in NS(f, i)} estMeterData\_N\_I(n, i) \times TLF\_N\_D(n, i) \times DLF\_N\_D(n, i) \end{dmath} Any separately metered (and settled) quantities associated with the Intermittent Load are removed to determine AMQ. \begin{dmath} \label{AMQ_F_I} AMQ\_F\_I(f, i) = \begin{dcases} NMQ\_F\_I(f, i) - NS\_F\_I(f, i) & \text{if $AfterIMDFlag\_G\_D(i) = 1$ or $isData\_F\_I(f, i) > 0$}\\ SCADA\_F\_I(f, i) & \text{elseif $SCADANullFlag\_G\_D(i) = 0$}\\ 0.5h \times SCADAEOI\_F\_I(f, i) & \text{elseif $EOINullFlag\_G\_D(i) = 0$}\\ estNMQ\_F\_I(f, i) - estNS\_F\_I(f, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{3.8cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{2cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead NNMQ\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)i & Non-loss adjusted net metered energy measured by the connection point for Facility f in Trading Interval i & (\ref{NNMQ_F_I})\\ \hline estNNMQ\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)i & Non-loss adjusted net metered energy measured by the connection point (including estimation) for Facility f in Trading Interval i & (\ref{estNNMQ_F_I})\\ \hline NMQ\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)i & Loss adjusted net metered energy measured by the connection point for Facility f in Trading Interval i & (\ref{NMQ_F_I})\\ \hline estNMQ\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)i & Loss adjusted net metered energy (including estimation) measured by the connection point for Facility f in Trading Interval i & (\ref{estNMQ_F_I})\\ \hline NS\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)ii & Net supply that is separately metered associated with Facility f in Trading Interval i & (\ref{NS_F_I})\\ \hline estNS\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)ii & Net supply (including estimation) that is separately metered associated with Facility f in Trading Interval i & (\ref{estNS_F_I})\\ \hline AMQ\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)vi, 2.30B.11(a)iii & Adjusted meter quantity (including estimation) for Facility f in Trading Interval i & (\ref{AMQ_F_I})\\ \hline AfterIMDFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when the Interval Meter Deadline has passed for the Trading Week of Trading Day d, and 0 otherwise & I\\ \hline DLF\_F\_D(f, d) & & F & D & Ch 11 & Distribution Loss Factor for Facility f for Trading Day d & I\\ \hline DLF\_N\_D(n, d) & & N & D & Ch 11 & Distribution Loss Factor for NMI n for Trading Day d & I\\ \hline EOINullFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when EOI Quantities are unavailable for Trading Day d, and 0 otherwise & I\\ \hline estMeterData\_N\_I(n, i) & MWh & N & I & & Non-loss adjusted energy quantity (including estimation) for NMI n in Trading Interval i & (\ref{estMeterData_N_I})\\ \hline isData\_F\_I(f, i) & Flag & F & I & & Flag that is 1 when Facility f has energy data in Trading Interval i, and 0 otherwise & (\ref{isData_F_I})\\ \hline MeterData\_N\_I(n, i) & MWh & N & I & & Non-loss adjusted energy quantity for NMI n in Trading Interval i & (\ref{MeterData_N_I})\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline NS(d) & \{\} & G & D & 2.30B.10(a)ii & Set of all connection points (NMIs) measuring an Intermittent Load which are separately metered (and settled) in Trading Day d & I\\ \hline SCADA\_F\_I(f, i) & MWh & F & I & 9.9.13 & Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & I\\ \hline SCADAEOI\_F\_I(f, i) & MW & F & I & & EOI Quantity of Facility f in Trading Interval i & I\\ \hline SCADANullFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when net generation quantities measured by SCADA are unavailable for Trading Day d, and 0 otherwise & I\\ \hline TLF\_F\_D(f, d) & & F & D & & Transmission Loss Factor for Facility f for Trading Day d & I\\ \hline TLF\_N\_D(n, d) & & N & D & & Transmission Loss Factor for NMI n for Trading Day d & I\\ \hline \end{longtable} Then the $AMQ\_F\_I$ value is split into three components based on whether it existed prior to New WEM Commencement Day, the standing data of the Intermittent Load or its associated embedded generator. For Legacy Intermittent Loads: \begin{itemize} \item If $AMQ\_F\_I$ is positive (generating), then the generation is attributed to the embedded generator up until its maximum sent out generation, with any excess generation being attributed to the Intermittent Load Metered Schedules. \item If $AMQ\_F\_I$ is negative (consuming), then the consumption is attributed to the embedded load up until its maximum non-intermittent consumption, with any excess consumption being attributed to the Intermittent Load Metered Schedules. \end{itemize} For New Intermittent Loads that are associated with a Registered Facility: \begin{itemize} \item If $AMQ\_F\_I$ is positive (generating), then the generation is attributed to the embedded generator. \item If $AMQ\_F\_I$ is negative (consuming), then the consumption is attributed to the embedded load. \end{itemize} For New Intermittent Loads that are not associated with a Registered Facility: \begin{itemize} \item $AMQ\_F\_I$ is attributed to the embedded load. \end{itemize} The diagram below illustrates this concept. \begin{center} \includegraphics[width=18cm]{IntLoadMS} \end{center} Mathematically, this is achieved by performing the following calculations. The maximum non-intermittent Load associated with Intermittent load f is determined as: \begin{dmath} \label{NL_F_D} NL\_F\_D(f, d) = -NLstanding\_F\_D(f, d) \times TLF\_F\_D(f, d) \times DLF\_F\_D(f, d) \end{dmath} The maximum Sent Out Generation for an embedded generator, e, associated with Intermittent Load f is determined as: \begin{dmath} \label{MSGEG_F_D} MSGEG\_F\_D(f, d) = MSG\_F\_D(IML2EG(f, d), d) \end{dmath} \begin{dmath} \label{MSG_F_D} MSG\_F\_D(f, d) = 0.5h \times SOC\_F\_D(f, d) \times TLF\_F\_D(f, d) \times DLF\_F\_D(f, d) \end{dmath} \begin{dmath} \label{SOC_F_D} SOC\_F\_D(f, d) = max(0, MSOC\_F\_D(f, d)) \end{dmath} Although the equations in the rules for Legacy Intermittent Loads are written differently to the equations below, they are mathematically equivalent. \begin{dmath} \label{MSEL_F_I} MSEL\_F\_I(f, i) = \begin{dcases} min(0, max(NL\_F\_D(f, i), AMQ\_F\_I(f, i))) & \text{for $f \in IML(i) \cap LegacyIML(i)$} \\ min(0, AMQ\_F\_I(f, i)) & \text{for $f \in IML(i) \cap \overline{LegacyIML(i)}$} \\ & \text{and $IML2EG(f, i)$ is not NULL} \\ AMQ\_F\_I(f, i) & \text{for $f \in IML(i) \cap \overline{LegacyIML(i)}$} \\ & \text{and $IML2EG(f, i)$ is NULL} \end{dcases} \end{dmath} \begin{dmath} \label{MSEG_F_I} MSEG\_F\_I(f, i) = \begin{dcases} max(0, min(MSGEG\_F\_D(f, i), AMQ\_F\_I(f, i))) & \text{for $f \in IML(i) \cap LegacyIML(i)$} \\ max(0, AMQ\_F\_I(f, i)) & \text{for $f \in IML(i) \cap \overline{LegacyIML(i)}$} \\ & \text{and $IML2EG(f, i)$ is not NULL} \\ 0 & \text{for $f \in IML(i) \cap \overline{LegacyIML(i)}$} \\ & \text{and $IML2EG(f, i)$ is NULL} \end{dcases} \end{dmath} \begin{dmath} \label{MSIL_F_I} MSIL\_F\_I(f, i) = \begin{dcases} AMQ\_F\_I(f, i) - MSEL\_F\_I(f, i) - MSEG\_F\_I(f, i) & \text{for $f \in IML(i) \cap LegacyIML(i)$} \\ 0 & \text{for $f \in IML(i) \cap \overline{LegacyIML(i)}$} \\ & \text{and $IML2EG(f, i)$ is not NULL} \\ 0 & \text{for $f \in IML(i) \cap \overline{LegacyIML(i)}$} \\ & \text{and $IML2EG(f, i)$ is NULL} \end{dcases} \end{dmath} The non-loss adjusted Metered Schedules for embedded load, embedded generator and Intermittent Load are defined as: \begin{dmath} \label{SOMSEL_F_I} SOMSEL\_F\_I(f, i) =\frac{MSEL\_F\_I(f, i)}{TLF\_F\_D(f, i) \times DLF\_F\_D(f, i)} \end{dmath} \begin{dmath} \label{SOMSEG_F_I} SOMSEG\_F\_I(f, i) =\frac{MSEG\_F\_I(f, i)}{TLF\_F\_D(f, i) \times DLF\_F\_D(f, i)} \end{dmath} \begin{dmath} \label{SOMSIL_F_I} SOMSIL\_F\_I(f, i) =\frac{MSIL\_F\_I(f, i)}{TLF\_F\_D(f, i) \times DLF\_F\_D(f, i)} \end{dmath} \begin{longtable}{|p{3.8cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{2cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead NL\_F\_D(f, d) & MWh & F & D & 2.30B.10(a)iii & Maximum possible consumption that is non-intermittent associated with Facility f in Trading Day d. This has a negative value. & (\ref{NL_F_D})\\ \hline MSGEG\_F\_D(f, d) & MWh & F & D & 2.30B.10(a)v & Maximum sent out generation of the embedded generator serving Intermittent Load Facility f in Trading Day d & (\ref{MSGEG_F_D})\\ \hline MSG\_F\_D(f, d) & MWh & F & D & 2.30B.10(a)v & Maximum sent out generation of Facility f in Trading Day d & (\ref{MSG_F_D})\\ \hline SOC\_F\_D(f, d) & MW & F & D & Ch 11 & Sent Out Capacity of Facility f in Trading Day d & (\ref{SOC_F_D})\\ \hline MSEL\_F\_I(f, i) & MWh & F & I & 9.5.2, 2.30B.10(c) i.2, ii.2, iii.2, iv.2 & Metered Schedule for the embedded load associated with Facility f in Trading Interval i & (\ref{MSEL_F_I})\\ \hline MSEG\_F\_I(f, i) & MWh & F & I & 9.5.2, 2.30B.10(c) i.3, ii.3, iii.3, iv.3 & Metered Schedule for the embedded generator associated with Intermittent Load Facility f in Trading Interval i & (\ref{MSEG_F_I})\\ \hline MSIL\_F\_I(f, i) & MWh & F & I & 9.5.2, 2.30B.10(c) i.1, ii.1, iii.1, iv.1 & Metered Schedule for the intermittent load associated with Facility f in Trading Interval i & (\ref{MSIL_F_I})\\ \hline SOMSEL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the embedded load associated with Facility f in Trading Interval i & (\ref{SOMSEL_F_I})\\ \hline SOMSEG\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the embedded generator associated with Intermittent Load Facility f in Trading Interval i & (\ref{SOMSEG_F_I})\\ \hline SOMSIL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the intermittent load associated with Facility f in Trading Interval i & (\ref{SOMSIL_F_I})\\ \hline AMQ\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)vi, 2.30B.11(a)iii & Adjusted meter quantity for Facility f in Trading Interval i & (\ref{AMQ_F_I})\\ \hline DLF\_F\_D(f, d) & & F & D & Ch 11 & Distribution Loss Factor for Facility f for Trading Day d & I\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline LegacyIML(d) & \{\} & G & D & 1.48.2 & Set of Intermittent Loads that were treated by AEMO as an Intermittent Load on the day before New WEM Commencement Day, and continue to retain this status on Trading Day d & I\\ \hline MSOC\_F\_D(f, d) & MW & F & D & App 1 (b)v, (c)v, (d)v & Maximum sent out capacity under optimal conditions of Facility f in Trading Day d & I\\ \hline NLstanding\_F\_D(f, d) & MWh & F & D & App 1 (g)iii & Maximum possible consumption that is non-intermittent (nominated in standing data) associated with Facility f in Trading Day d. This has a positive value. & I\\ \hline TLF\_F\_D(f, d) & & F & D & Ch 11 & Transmission Loss Factor for Facility f for Trading Day d & I\\ \hline \end{longtable} \subsubsection{Data Statuses} Statuses are set up to distinguish between NULL values and 0 values in AEMO's generic settlement calculation engine. Although these statuses are defined as equations in this section, they are treated as inputs in the metering calculations. \begin{dmath} \label{isData_F_I} isData\_F\_I(f, i) = \begin{dcases} 1 & \text{if $\displaystyle \sum_{n \in NMI(f, i)} isData\_N\_I(n, i) > 0$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{isData_N_I} isData\_N\_I(n, i) = \begin{dcases} 1 & \text{if $n \in NOINTMETER(i)$ and $SCADANullFlag\_G\_D(i) = 0$}\\ 1 & \text{if $(n \notin NOINTMETER(i)$ and $MQNullFlag\_N\_I(n, i) = 0$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead isData\_F\_I(f, i) & Flag & F & I & & Flag that is 1 when Facility f has energy data in Trading Interval i, and 0 otherwise & (\ref{isData_F_I})\\ \hline isData\_N\_I(n, i) & Flag & N & I & & Flag that is 1 when NMI n has energy data in Trading Interval i, and 0 otherwise & (\ref{isData_N_I})\\ \hline B(d) & \{\} & G & D & & Set of all generation metering channels associated with NMIs in Trading Day d & I\\ \hline E(d) & \{\} & G & D & & Set of all consumption metering channels associated with NMIs in Trading Day d & I\\ \hline MQNullFlag\_N\_I(n, i) & Flag & N & I & & Flag that is 1 when metering data is unavailable for all of the B and E channels associated with NMI n in Trading Interval i, and 0 otherwise & I\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline NOINTMETER(d) & \{\} & G & D & & Set of Facilities in WEMS for which no Interval meter exists in Trading Day d & I\\ \hline SCADANullFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when net generation quantities measured by SCADA are unavailable for Trading Day d, and 0 otherwise & I\\ \hline \end{longtable} \subsubsection{Like Day, Like Period (LDLP)} A 'Like Day' of Trading Interval i is defined as follows: \begin{itemize} \item If i falls on a Trading Day d that is a Public Holiday, then a 'Like Day' is any Trading Day that is a Sunday. \item If i falls on a Trading Day d that is not a public holiday, then a 'Like Day' is any Trading Day that is not a Public Holiday and is the same day of the week as d. \end{itemize} The set of Trading Days that are a 'Like Day' of Trading Interval i is infinitely large. For the purposes of estimation, the set of Like Days we will use will be defined as the union of: \begin{itemize} \item the set of Like Days that occur after the last Trading Day for which the relevant Interval Meter Deadline has passed; and \item the set containing the most recent Like Day for which the relevant Interval Meter Deadline has passed. \end{itemize} A 'Like Period' of Trading Interval i is defined as any Trading Interval that is the same time of day as i. A 'Like Day, Like Period' of i, is defined as a Trading Interval that both falls on a 'Like Day' of i and is a 'Like Period' of i. \begin{dmath} \label{LDLP} LDLP(i) = \text{The set of 'Like Day, Like Periods' of $i$ as illustrated in the description above and table below.} \end{dmath} $LDLP(i)$ set is ordered from most recent interval to least recent interval. LDLP(i)[1] refers to the most recent interval in the set and LDLP(i)[j] refers to the least recent interval in the set. Refer to the table below for examples illustrating LDLP(i) for estimating Trading Interval i when the calculation is performed at time j. \begin{longtable}{|p{0.5cm}|p{4cm}|p{6cm}|p{5.5cm}|} \rowcolor{violet} \color{white}\# & \color{white}i @ j & \color{white}LDLP(i) @ j & \color{white}Purpose of example \\ \hline \endhead 1 & 20:30 Fri 03 May 2019 calculated @ \newline 23:59 01 May 2019 & \{20:30 Fri 26 Apr 2019, \sout{20:30 Fri 19 Apr 2019}, 20:30 Fri 12 Apr 2019, 20:30 Fri 05 Apr 2019, 20:30 Fri 29 Mar 2019, 20:30 Fri 22 Mar 2019, 20:30 Fri 15 Mar 2019, 20:30 Fri 08 Mar 2019, 20:30 Fri 01 Mar 2019, 20:30 Fri 22 Feb 2019\} & Shows omission of Public Holidays (Good Friday) when i is not a Public Holiday.\\ \hline 2 & 20:30 Fri 03 May 2019 calculated @ \newline 00:00 02 May 2019 & \{20:30 Fri 26 Apr 2019, \sout{20:30 Fri 19 Apr 2019}, 20:30 Fri 12 Apr 2019, 20:30 Fri 05 Apr 2019, 20:30 Fri 29 Mar 2019\} & Compare with example 1 to show effect of calculating after the Interval Meter Deadline for Trading Month March 2019 on 8 May 2019.\\ \hline 3 & 08:00 Thu 25 Apr 2019 calculated @ \newline 13:00 27 Apr 2019 & \{08:00 Sun 21 Apr 2019, 08:00 Sun 14 Apr 2019, 08:00 Sun 07 Apr 2019, 08:00 Sun 31 Mar 2019, 08:00 Sun 24 Mar 2019, 08:00 Sun 17 Mar 2019, 08:00 Sun 10 Mar 2019, 08:00 Sun 03 Mar 2019, 08:00 Sun 24 Feb 2019\} & Shows example when i falls on a Trading Day that is a Public Holiday (ANZAC Day).\\ \hline 4 & 07:30 Thu 25 Apr 2019 calculated @ \newline 13:00 27 Apr 2019 & \{07:30 Thu 18 Apr 2019, 07:30 Thu 11 Apr 2019, 07:30 Thu 04 Apr 2019, 07:30 Thu 28 Mar 2019, 07:30 Thu 21 Mar 2019, 07:30 Thu 14 Mar 2019, 07:30 Thu 07 Mar 2019, 07:30 Thu 28 Feb 2019\} & Compare with example 3 to show distinction between a Trading Day that is a Public Holiday and a calendar day that is a Public Holiday.\\ \hline \end{longtable} \newpage In subsequent sections, $LDLP\_N\_I(n, i)$ will be used as the inputs to functions that expect a single Trading Interval (and not a set of Trading Intervals). The purpose of this variable is to return the interval itself, if data is available, otherwise to return the most recent interval in the set LDLP(i), for which data exists. This is defined mathematically in the equations below. \begin{dmath} \label{LDLP_N_I} LDLP\_N\_I(n, i) = \begin{dcases} i & \text{if $isData\_N\_I(n, i) = 1$ or $AfterIMDFlag\_G\_D(i) = 1$}\\ LDLP(i)[1] & \text{elseif $isData\_N\_I(n, LDLP(i)[1]) = 1$}\\ LDLP(i)[2] & \text{elseif $isData\_N\_I(n, LDLP(i)[2]) = 1$}\\ \ \ \ \ \ \vdots & \ \ \ \ \ \vdots\\ LDLP(i)[j-1] & \text{elseif $isData\_N\_I(n, LDLP(i)[j-1]) = 1$}\\ LDLP(i)[j] & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead LDLP\_N\_I(n, i) & & N & I & & The interval used to determine scaled meter data for NMI n in Trading Interval i & (\ref{LDLP_N_I})\\ \hline AfterIMDFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when the Interval Meter Deadline has passed for the Trading Week of Trading Day d, and 0 otherwise & I\\ \hline isData\_N\_I(n, i) & Flag & N & I & & Flag that is 1 when NMI n has energy data in Trading Interval i, and 0 otherwise & (\ref{isData_N_I})\\ \hline LDLP(i) & \{\} & G & I & & Set of Like Day, Like Periods of Trading Interval i. $LDLP(i)[1]$ represents the most recent Like Day, Like Period of Trading Interval i and $LDLP(i)[j]$ represents the least recent Like Day, Like Period of Trading Interval i & (\ref{LDLP})\\ \hline \end{longtable} \subsubsection{Scaling Factors} \begin{dmath} \label{SF_N_I} SF\_N\_I(n, i) = \begin{dcases} ACTIVE\_N\_D(n, i) \times \frac{LOADFCST\_G\_I(i)}{LOADFCST\_G\_I(LDLP\_N\_I(n, i))} & \text{if $LOADFCST\_G\_I(i) \neq 0$}\\ & \text{and $LOADFCST\_G\_I(LDLP\_N\_I(n, i)) \neq 0$}\\ ACTIVE\_N\_D(n, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead SF\_N\_I(n, i) & & N & I & & Scaling Factor for NMI n in Trading Interval i & (\ref{SF_N_I})\\ \hline ACTIVE\_N\_D(n, d) & Flag & N & D & & 1 if the NMI n is active and associated with a Market Participant in Trading Day d and 0 otherwise & I\\ \hline LDLP\_N\_I(n, i) & & N & I & & The interval used to determine scaled meter data for NMI n in Trading Interval i & (\ref{LDLP_N_I})\\ \hline LOADFCST\_G\_I(i) & MW & G & I & & Load Forecast in Trading Interval i & I\\ \hline \end{longtable} \subsection{Metering Aggregations} \subsubsection{Invocation} The following table outlines the preliminary invocation for the high-level calculations. \begin{longtable}{|p{8cm}|p{9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Scope Set \\ \hline \endhead $ABSNDL\_P\_I(p, i)$ & $\forall p \in P(i)$ \\ \hline $CCQNDL\_P\_I(p, i)$ & $\forall p \in P(i)$ \\ \hline $DSPL\_F\_I(f, i)$ & $\forall f \in DSP(i)$ \\ \hline $MSNDL\_P\_I(p, i)$ & $\forall p \in P(i)$ \\ \hline $SOMS\_G\_I(i)$ & N/A \\ \hline \end{longtable} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead ABSNDL\_P\_I(p, i) & MWh & P & I & 9.12.5, 9.10.38 & Sum of the absolute value of Metered Schedules for all Non-Dispatchable Loads for participant p in Trading Interval i & (\ref{ABSNDL_P_I})\\ \hline CCQNDL\_P\_I(p, i) & MWh & P & I & 9.5.7 & Sum of all Non-Dispatchable Load Metered Schedules that are negative for participant p in Trading Interval i & (\ref{CCQNDL_P_I})\\ \hline DSPL\_F\_I(f, i) & MWh & F & I & 9.5.4 & Demand Side Programme Load for Facility f in Trading Interval i & (\ref{DSPL_F_I})\\ \hline MSNDL\_P\_I(p, i) & MWh & P & I & & Sum of all Non-Dispatchable Load Metered Schedules for Market Participant p in Trading Interval i & (\ref{MSNDL_P_I}) \\ \hline SOMS\_G\_I(i) & MWh & G & I & Ch 11 & Total Sent Out Generation in Trading Interval i & (\ref{SOMS_G_I})\\ \hline DSP(d) & \{\} & G & D & Ch 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline P(d) & \{\} & G & D & Ch 11 & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline \end{longtable} \subsubsection{CCQNDL\_P\_I} \begin{dmath} \label{CCQNDL_P_I} CCQNDL\_P\_I(p, i) = \displaystyle \sum_{f \in NDL(p, i)} min(0, MS\_F\_I(f, i)) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead CCQNDL\_P\_I(p, i) & MWh & P & I & 9.5.7 & Sum of all Non-Dispatchable Load Metered Schedules that are negative for participant p in Trading Interval i & (\ref{CCQNDL_P_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 9.5.3, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline NDL(d) & \{\} & G & D & Ch 11 & Set of Non-Dispatchable Loads in Trading Day d & (\ref{NDL})\\ \hline \end{longtable} \subsubsection{ABSNDL\_P\_I} \begin{dmath} \label{ABSNDL_P_I} ABSNDL\_P\_I(p, i) = \displaystyle \sum_{f \in NDL(p, i)} \abs{MS\_F\_I(f, i)} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead ABSNDL\_P\_I(p, i) & MWh & P & I & 9.12.5, 9.10.38 & Sum of the absolute value of Metered Schedules for all Non-Dispatchable Loads for participant p in Trading Interval i & (\ref{ABSNDL_P_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 9.5.3, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline NDL(d) & \{\} & G & D & Ch 11 & Set of Non-Dispatchable Loads in Trading Day d & (\ref{NDL})\\ \hline \end{longtable} \subsubsection{MSNDL\_P\_I} \begin{dmath} \label{MSNDL_P_I} MSNDL\_P\_I(p, i) = \displaystyle \sum_{f \in NDL(p, i)} MS\_F\_I(f, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MSNDL\_P\_I(p, i) & MWh & P & I & & Sum of all Non-Dispatchable Load Metered Schedules for Market Participant p in Trading Interval i & (\ref{MSNDL_P_I}) \\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 9.5.3, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline NDL(d) & \{\} & G & D & Ch 11 & Set of Non-Dispatchable Loads in Trading Day d & (\ref{NDL})\\ \hline \end{longtable} \subsubsection{DSPL\_F\_I} \begin{dmath} \label{DSPL_F_I} DSPL\_F\_I(f, i) = \displaystyle \sum_{n \in DSPNMI(f, i)} -SOMS\_N\_I(n, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead DSPL\_F\_I(f, i) & MWh & F & I & 9.5.4 & Demand Side Programme Load for Facility f in Trading Interval i & (\ref{DSPL_F_I})\\ \hline SOMS\_N\_I(n, i) & MWh & N & I & Ch 11 & Sent Out Metered Schedule (including estimation) for NMI n in Trading Interval i & (\ref{SOMS_N_I})\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline \end{longtable} \subsubsection{SOMS\_G\_I} \begin{dmath} \label{SOMS_G_I} SOMS\_G\_I(i) = \displaystyle \sum_{f \in SF(i) \cup SSF(i) \cup NSF(i)} max( 0, SOMS\_F\_I(f, i)) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead SOMS\_G\_I(i) & MWh & G & I & Ch 11 & Total Sent Out Generation in Trading Interval i & (\ref{SOMS_G_I})\\ \hline SOMS\_F\_I(f, i) & MWh & F & I & Ch 11 & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline NSF(d) & \{\} & G & D & Ch 11 & Set of Non-Scheduled Facilities in Trading Day d & (\ref{NSF}) \\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline \end{longtable} \section{Calculation Engine} AEMO uses the same calculation engine for both settlement and prudentials. Settlement calculations are determined for a Trading Week; however, prudential calculations are determined for each Trading Day. Therefore, the common calculation engine has been implemented on a daily basis, and can then be aggregated to achieve the required settlement outputs. \subsection{Invocation} The following table outlines the invocation for the high-level calculations that occur after the metering calculations. \begin{longtable}{|p{8cm}|p{9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Scope Set \\ \hline \endhead $TOTAL\_P\_D(p, d)$ & $\forall d \in D(w)$ and $\forall p \in P(d)$\\ \hline $SOMS\_G\_I(i)$ & N/A \\ \hline \end{longtable} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead TOTAL\_P\_D(p, d) & \$ & P & D & & Total settlement amount (including GST and interest) for participant p in Trading Day d & (\ref{TOTAL_P_D})\\ \hline SOMS\_G\_I(i) & MWh & G & I & Ch 11 & Total Sent Out Generation in Trading Interval i & (\ref{SOMS_G_I})\\ \hline D(w) & \{\} & G & W0 & Ch 11 & Set of Trading Days in Trading Week w & I\\ \hline \end{longtable} \subsection{Daily Aggregations} \begin{dmath} \label{TOTAL_P_D} TOTAL\_P\_D(p, d) = NOINT\_P\_D(p, d) + NETINT\_P\_D(p, d) \end{dmath} \begin{dmath} \label{NOINT_P_D} NOINT\_P\_D(p, d) = NETSA\_P\_D(p, d) + SFMFSA\_P\_D(p, d) + SFRFSA\_P\_D(p, d) + SFCFSA\_P\_D(p, d) + GST\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead TOTAL\_P\_D(p, d) & \$ & P & D & & Total settlement amount (including GST and interest) for participant p in Trading Day d & (\ref{TOTAL_P_D})\\ \hline NOINT\_P\_D(p, d) & \$ & P & D & & Total settlement amount (including GST, excluding interest) for participant p in Trading Day d & (\ref{NOINT_P_D})\\ \hline NETINT\_P\_D(p, d) & \$ & P & D & 9.1.4 & Net interest paid/charged to participant p for Trading Day d & (\ref{NETINT_P_D})\\ \hline NETSA\_P\_D(p, d) & \$ & P & D & 9.6.3 & Net settlement amount for participant p in Trading Day d & (\ref{NETSA_P_D})\\ \hline SFMFSA\_P\_D(p, d) & \$ & P & D & 9.13.2 & Service Fee Settlement Amount paid to AEMO for Trading Day d & (\ref{SFMFSA_P_D})\\ \hline SFRFSA\_P\_D(p, d) & \$ & P & D & 9.13.3 & Service Fee Settlement Amount paid to the ERA for Trading Day d & (\ref{SFRFSA_P_D})\\ \hline SFCFSA\_P\_D(p, d) & \$ & P & D & 9.13.4 & Service Fee Settlement Amount paid to the Coordinator for Trading Day d & (\ref{SFCFSA_P_D})\\ \hline GST\_P\_D(p, d) & \$ & P & D & 9.1.3 & Net GST paid/charged to participant p for Trading Day d & (\ref{GST_P_D})\\ \hline \end{longtable} \subsubsection{Net Settlement Amount} These equations are based on the equations stated in MR 9.6. \begin{dmath} \label{NETSA_P_D} NETSA\_P\_D(p, d) = STEMSA\_P\_D(p, d) + RCSA\_P\_D(p, d) + RTESA\_P\_D(p, d) + ESSSA\_P\_D(p, d) + OCSA\_P\_D(p, d) + MPFSA\_P\_D(p, d) + DLASA\_P\_D(p, d) + MSCSA\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead NETSA\_P\_D(p, d) & \$ & P & D & 9.6.3 & Net settlement amount for participant p in Trading Day d & (\ref{NETSA_P_D})\\ \hline STEMSA\_P\_D(p, d) & \$ & P & D & 9.7.2 & Settlement amount for energy cleared in STEM for participant p in Trading Day d & (\ref{STEMSA_P_D})\\ \hline RCSA\_P\_D(p, d) & \$ & P & D & 9.8.2 & Reserve Capacity settlement amount for participant p in Trading Day d & (\ref{RCSA_P_D})\\ \hline RTESA\_P\_D(p, d) & \$ & P & D & 9.9.2, 9.9.3 & Real-Time Energy settlement amount for participant p in Trading Day d & (\ref{RTESA_P_D})\\ \hline ESSSA\_P\_D(p, d) & \$ & P & D & 9.10.2 & Essential System Services settlement amount for participant p in Trading Day d & (\ref{ESSSA_P_D})\\ \hline OCSA\_P\_D(p, d) & \$ & P & D & 9.11.2 & Outage compensation settlement amount for participant p in Trading Day d & (\ref{OCSA_P_D})\\ \hline MPFSA\_P\_D(p, d) & \$ & P & D & 9.12.2 & Market Participant Fee Settlement Amount charged to participant p for Trading Day d & (\ref{MPFSA_P_D})\\ \hline DLASA\_P\_D(p, d) & \$ & P & D & 9.20.11(e) & Default Levy Adjustment settlement amount for participant p in Trading Day d & (\ref{DLASA_P_D}) \\ \hline MSCSA\_P\_D(p, d) & \$ & P & D & 9.11A.3 & Market suspension compensation settlement amount for participant p in Trading Day d & (\ref{MSCSA_P_D})\\ \hline \end{longtable} \subsection{STEM} \begin{dmath} \label{STEMSA_P_D} STEMSA\_P\_D(p, d) = STEMSAS\_P\_D(p, d) - STEMSAD\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead STEMSA\_P\_D(p, d) & \$ & P & D & 9.7.2 & Settlement amount for energy cleared in STEM for participant p in Trading Day d & (\ref{STEMSA_P_D})\\ \hline STEMSAS\_P\_D(p, d) & \$ & P & D & 9.7 & Settlement amount for energy sold in STEM for participant p in Trading Day d & (\ref{STEMSAS_P_D})\\ \hline STEMSAD\_P\_D(p, d) & \$ & P & D & 9.7 & Settlement amount for energy purchased in STEM for participant p in Trading Day d & (\ref{STEMSAD_P_D})\\ \hline \end{longtable} \subsubsection{STEM Payments and Charges} These equations are based on the equations stated in 9.7. They have been modified to separate quantities into payments and charges. \begin{dmath} \label{STEMSAS_P_D} STEMSAS\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} STEMSAS\_P\_I(p, i) \end{dmath} \begin{dmath} \label{STEMSAD_P_D} STEMSAD\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} STEMSAD\_P\_I(p, i) \end{dmath} \begin{dmath} \label{STEMSAS_P_I} STEMSAS\_P\_I(p, i) = \begin{dcases} STEMP\_G\_I(i) \times STEMSQ\_P\_I(p, i) & SSF\_G\_D(i) = 1 \\ 0 & SSF\_G\_D(i) = 0 \\ \end{dcases} \end{dmath} \begin{dmath} \label{STEMSAD_P_I} STEMSAD\_P\_I(p, i) = \begin{dcases} STEMP\_G\_I(i) \times STEMDQ\_P\_I(p, i) & SSF\_G\_D(i) = 1 \\ 0 & SSF\_G\_D(i) = 0 \\ \end{dcases} \end{dmath} \begin{dmath} \label{STEMSQ_P_I} STEMSQ\_P\_I(p, i) = max(0, STEMQ\_P\_I(p, i) \times SSF\_G\_D(i)) \end{dmath} \begin{dmath} \label{STEMDQ_P_I} STEMDQ\_P\_I(p, i) = -min(0, STEMQ\_P\_I(p, i) \times SSF\_G\_D(i)) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead STEMSAS\_P\_D(p, d) & \$ & P & D & 9.7 & Settlement amount for energy sold in STEM for participant p in Trading Day d & (\ref{STEMSAS_P_D})\\ \hline STEMSAD\_P\_D(p, d) & \$ & P & D & 9.7 & Settlement amount for energy purchased in STEM for participant p in Trading Day d & (\ref{STEMSAD_P_D})\\ \hline STEMSAS\_P\_I(p, i) & \$ & P & I & 9.7 & Settlement amount for energy sold in STEM for participant p in Trading Interval i & (\ref{STEMSAS_P_I})\\ \hline STEMSAD\_P\_I(p, i) & \$ & P & I & 9.7 & Settlement amount for energy purchased in STEM for participant p in Trading Interval i & (\ref{STEMSAD_P_I})\\ \hline STEMSQ\_P\_I(p, i) & MWh & P & I & 6.9.13(c) & Energy sold in STEM by participant p in Trading Interval i & (\ref{STEMSQ_P_I})\\ \hline STEMDQ\_P\_I(p, i) & MWh & P & I & 6.9.13(b) & Energy bought in STEM by participant p in Trading Interval i & (\ref{STEMDQ_P_I})\\ \hline SSF\_G\_D(d) & Flag & G & D & 6.21.1(a) & Flag that is 0 if STEM was suspended in Trading Day d, and 1 otherwise & I\\ \hline STEMP\_G\_I(i) & \$/MWh & G & I & 6.21.1(b) & STEM Clearing Price declared in Trading Interval i & I\\ \hline STEMQ\_P\_I(p, i) & MWh & P & I & 6.21.1(c) & Energy purchased (sold) in STEM by participant p in Trading Interval i & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsection{Real-Time Energy} Real-Time Energy is split into the following parts: \begin{itemize} \item Energy payments and charges \item Energy Uplift payments and charges \end{itemize} \begin{dmath} \label{RTESA_P_D} RTESA\_P\_D(p, d) = ETSA\_P\_D(p, d) - ETDA\_P\_D(p, d) + EUP\_P\_D(p, d) - EUR\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RTESA\_P\_D(p, d) & \$ & P & D & 9.9.2, 9.9.3 & Real-Time Energy settlement amount for participant p in Trading Day d & (\ref{RTESA_P_D})\\ \hline ETSA\_P\_D(p, d) & \$ & P & D & 9.9.4 & Energy trading amount for energy sold in the Real-Time Energy market for participant p for Trading Day d & (\ref{ETSA_P_D})\\ \hline ETDA\_P\_D(p, d) & \$ & P & D & 9.9.4 & Energy trading amount for energy purchased in the Real-Time Energy market for participant p for Trading Day d & (\ref{ETDA_P_D})\\ \hline EUP\_P\_D(p, d) & \$ & P & D & 9.9.6 & Energy uplift amount payable to participant p for Trading Day d & (\ref{EUP_P_D})\\ \hline EUR\_P\_D(p, d) & \$ & P & D & 9.9.15 & Energy uplift amount recoverable from participant p for Trading Day d & (\ref{EUR_P_D})\\ \hline \end{longtable} \newpage \subsubsection{Energy Payments and Charges} \begin{dmath} \label{ETSA_P_D} ETSA\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} ETSA\_P\_I(p, i) \end{dmath} \begin{dmath} \label{ETDA_P_D} ETDA\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} ETDA\_P\_I(p, i) \end{dmath} \begin{dmath} \label{ETSA_P_I} ETSA\_P\_I(p, i) = FRTP\_G\_I(i) \times NTSQ\_P\_I(p, i) \end{dmath} \begin{dmath} \label{ETDA_P_I} ETDA\_P\_I(p, i) = FRTP\_G\_I(i) \times NTDQ\_P\_I(p, i) \end{dmath} \begin{dmath} \label{NTSQ_P_I} NTSQ\_P\_I(p, i) = max(0, NTQ\_P\_I(p, i)) \end{dmath} \begin{dmath} \label{NTDQ_P_I} NTDQ\_P\_I(p, i) = -min(0, NTQ\_P\_I(p, i)) \end{dmath} \begin{dmath} \label{NTQ_P_I} NTQ\_P\_I(p, i) = \bigg(\displaystyle \sum_{f \in REG\_F(p, i)} MS\_F\_I(f, i) \bigg) + MSNDL\_P\_I(p, i) - NCP\_P\_I(p, i) \end{dmath} \begin{dmath} \label{NCP_P_I} NCP\_P\_I(p, i) = NBP\_P\_I(p, i) - STEMDQ\_P\_I(p, i) + STEMSQ\_P\_I(p, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead ETSA\_P\_D(p, d) & \$ & P & D & 9.9.4 & Energy trading amount for energy sold in the Real-Time Energy market for participant p for Trading Day d & (\ref{ETSA_P_D})\\ \hline ETDA\_P\_D(p, d) & \$ & P & D & 9.9.4 & Energy trading amount for energy purchased in the Real-Time Energy market for participant p for Trading Day d & (\ref{ETDA_P_D})\\ \hline ETSA\_P\_I(p, i) & \$ & P & I & 9.9.4 & Energy trading amount for energy sold in the Real-Time Energy market for participant p in Trading Interval i & (\ref{ETSA_P_I})\\ \hline ETDA\_P\_I(p, i) & \$ & P & I & 9.9.4 & Energy trading amount for energy purchased in the Real-Time Energy market for participant p in Trading Interval i & (\ref{ETDA_P_I})\\ \hline FRTP\_G\_I(i) & \$/MWh & G & I & Ch 11 & Final Reference Trading Price in Trading Interval i & I\\ \hline NTSQ\_P\_I(p, i) & MWh & P & I & 9.9.4 & Quantity of energy sold in the Real-Time Energy market for participant p in Trading Interval i & (\ref{NTSQ_P_I})\\ \hline NTDQ\_P\_I(p, i) & MWh & P & I & 9.9.4 & Quantity of energy purchased in the Real-Time Energy market for participant p in Trading Interval i & (\ref{NTDQ_P_I})\\ \hline NTQ\_P\_I(p, i) & MWh & P & I & 9.9.5 & Net Trading Quantity for participant p in Trading Interval i & (\ref{NTQ_P_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 9.5.3, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline MSNDL\_P\_I(p, i) & MWh & P & I & & Sum of all Non-Dispatchable Load Metered Schedules for Market Participant p in Trading Interval i & (\ref{MSNDL_P_I}) \\ \hline NCP\_P\_I(p, i) & MWh & P & I & 6.9.13 & Net Contract Position for participant p in Trading Interval i & (\ref{NCP_P_I})\\ \hline NBP\_P\_I(p, i) & MWh & P & I & 6.9.2 & Net Bilateral Position for participant p in Trading Interval i & I\\ \hline STEMSQ\_P\_I(p, i) & MWh & P & I & 6.9.13(c) & Energy sold in STEM by participant p in Trading Interval i & (\ref{STEMSQ_P_I})\\ \hline STEMDQ\_P\_I(p, i) & MWh & P & I & 6.9.13(b) & Energy bought in STEM by participant p in Trading Interval i & (\ref{STEMDQ_P_I})\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsubsection{Energy Uplift Payments} Energy Uplift Payments are made to Market Participants in respect of their Registered Facilities when the marginal offer price at which they are cleared is greater than the Energy Market Clearing Price (defined at the Reference Node), thereby leaving them out of pocket.\\ \begin{dmath} \label{EUP_P_D} EUP\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} EUP\_P\_I(p, i) \end{dmath} \begin{dmath} \label{EUP_P_I} EUP\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} EUP\_F\_I(f, i) \end{dmath} \begin{dmath} \label{EUP_F_I} EUP\_F\_I(f, i) = \displaystyle \sum_{di \in DI(i)} EUP\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{EUP_F_DI} EUP\_F\_DI(f, di) = MISPRICE\_F\_DI(f, di) \times UPLIFTP\_F\_DI(f, di) \times UPLIFTQ\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{MISPRICE_F_DI} MISPRICE\_F\_DI(f, di) = \begin{dcases} 1 & \text{for} \bigg(\text{$RTECQ\_F\_DI(f, di) > 0$ and $CRENT\_F\_DI(f, di) > 0$}\\ & \text{and $MOP\_F\_DI(f, di) > FEMCP\_G\_DI(di)$}\\ & \text{and $f \notin BDRR(di)$ and $f \notin BESSEM(di)$ and $f \notin BNCESS(di)$}\bigg)\\ & \text{or $RTMSuspFlag\_G\_DI(di) = 1$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{UPLIFTP_F_DI} UPLIFTP\_F\_DI(f, di) = \begin{dcases} 0 & \text{for $ISTC\_F\_DI(f, di) = 0$}\\ max(0, MOP\_F\_DI(f, di) - FRTP\_G\_I(di)) & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{UPLIFTQ_F_DI} UPLIFTQ\_F\_DI(f, di) = max(0, MS\_F\_DI(f, di)) \end{dmath} \begin{dmath} \label{MS_F_DI} MS\_F\_DI(f, di) = \begin{dcases} \frac{SCADA\_F\_DI(f, di)}{SCADA\_F\_I(f, di)} \times MS\_F\_I(f, di) & \text{for $SCADA\_F\_I(f, di) \neq 0$}\\ \frac{MS\_F\_I(f, di)}{6} & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead EUP\_P\_D(p, d) & \$ & P & D & 9.9.6 & Energy uplift amount payable to participant p for Trading Day d & (\ref{EUP_P_D})\\ \hline EUP\_P\_I(p, i) & \$ & P & I & 9.9.6 & Energy uplift amount payable to participant p in Trading Interval i & (\ref{EUP_P_I})\\ \hline EUP\_F\_I(f, i) & \$ & F & I & 9.9.7 & Energy Uplift Payment for Facility f in Trading Interval i & (\ref{EUP_F_I})\\ \hline EUP\_F\_DI(f, di) & \$ & F & DI & 9.9.8 & Energy Uplift Payment for Facility f in Dispatch Interval di & (\ref{EUP_F_DI})\\ \hline MISPRICE\_F\_DI(f, di) & Flag & F & DI & 9.9.9 & Mispricing trigger for Facility f in Dispatch Interval di & (\ref{MISPRICE_F_DI})\\ \hline UPLIFTP\_F\_DI(f, di) & \$/MWh & F & DI & 9.9.10 & Energy Uplift Price for Facility f in Dispatch Interval di & (\ref{UPLIFTP_F_DI})\\ \hline UPLIFTQ\_F\_DI(f, di) & MWh & F & DI & 9.9.11 & Energy Uplift Quantity for Facility f in Dispatch Interval di & (\ref{UPLIFTQ_F_DI})\\ \hline BDRR(di) & \{\} & G & DI & 9.9.9(e) & Set of Registered Facilities whose EOI Quantity is higher than it would otherwise be in Dispatch Interval di, as a result of a binding ramp rate constraint applied under clause 7.2.4(c) & I\\ \hline BESSEM(di) & \{\} & G & DI & 9.9.9(f) & Set of Registered Facilities whose EOI Quantity is constrained to its Enablement Minimum value in Dispatch Interval di, as a result of a binding Essential System Service Minimum Constraint applied under clause 7.8.5(b)(i) for a Frequency Co-optimised Essential System Service other than RoCoF Control Service & I\\ \hline BNCESS(di) & \{\} & G & DI & 9.9.9(g) & Set of Registered Facilities whose EOI Quantity is higher than it would otherwise would be in Dispatch Interval di, as a result of a binding Constraint Equation relating to an NCESS Contract under clause 5.9.1(b) & I\\ \hline CRENT\_F\_DI(f, di) & \$/MW & F & DI & 7.13.1EA(b) & Congestion Rental for Facility f in Dispatch Interval di & I\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline FEMCP\_G\_DI(di) & \$/MWh & G & DI & Ch 11 & Final Energy Market Clearing Price in Dispatch Interval di & I\\ \hline FRTP\_G\_I(i) & \$/MWh & G & I & Ch 11 & Final Reference Trading Price in Trading Interval i & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline ISTC\_F\_DI(f, di) & & F & DI & 9.9.10(a) & In-Service tranche count is the number of Price-Quantity Pairs for non-zero quantities of In-Service Capacity in the Real-Time Market Offer for energy for Facility f in Dispatch Interval di & I\\ \hline MOP\_F\_DI(f, di) & \$/MWh & F & DI & 9.9.9(c), 9.9.10(b)i, 9.9.10(b)ii & Marginal offer price is the highest Loss Factor Adjusted Price associated with any cleared (or scheduled) Price-Quantity Pair for In-Service Capacity in respect of a Real-Time Market Offer for energy that was dispatched for Facility f in Dispatch Interval di & I\\ \hline MS\_F\_DI(f, di) & MWh & F & DI & 9.9.12 & Estimated of Injection or Withdrawal MWh for Facility f in Dispatch Interval di & (\ref{MS_F_DI})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 9.5.3, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline RTECQ\_F\_DI(f, di) & MWh & F & DI & 9.9.9(aA) & Real-Time Energy cleared quantity for Facility f in Dispatch Interval di, as recorded in the relevant Dispatch Instruction & I\\ \hline RTMSuspFlag\_G\_DI(di) & Flag & G & DI & 7.11D.6 & RTM Suspension Flag that is 1 if the Real-Time Market was suspended in Dispatch Interval di, and 0 otherwise & I\\ \hline SCADA\_F\_DI(f, di) & MWh & F & DI & 7.13.1E(a)i & Net generation measured by SCADA for Facility f in Dispatch Interval di, non-loss adjusted & I\\ \hline SCADA\_F\_I(f, i) & MWh & F & I & 9.9.13 & Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & I\\ \hline \end{longtable} \subsubsection{Energy Uplift Charges (Recoverable)} The cost of Energy Uplift Payments is allocated according to Consumption Share.\\ \begin{dmath} \label{EUR_P_D} EUR\_P\_D(p, d) = \sum_{i \in I(d)} EUR\_P\_I(p, i) \end{dmath} \begin{dmath} \label{EUR_P_I} EUR\_P\_I(p, i) = EUR\_G\_I(i) \times CS\_P\_I(p, i) \end{dmath} \begin{dmath} \label{EUR_G_I} EUR\_G\_I(i) = \sum_{p \in MP(i)} EUP\_P\_I(p, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead EUR\_P\_D(p, d) & \$ & P & D & 9.9.15 & Energy uplift amount recoverable from participant p for Trading Day d & (\ref{EUR_P_D})\\ \hline EUR\_P\_I(p, i) & \$ & P & I & 9.9.15 & Energy uplift amount recoverable from participant p in Trading Interval i & (\ref{EUR_P_I})\\ \hline EUR\_G\_I(i) & \$ & G & I & 9.9.14 & Total energy uplift amount recoverable in Trading Interval i & (\ref{EUR_G_I})\\ \hline EUP\_P\_I(p, i) & \$ & P & I & 9.9.6 & Energy uplift amount payable to participant p in Trading Interval i & (\ref{EUP_P_I})\\ \hline CS\_P\_I(p, i) & & P & I & 9.5.6 & Consumption share of participant p in Trading Interval i & (\ref{CS_P_I})\\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsubsection{Consumption Share} \begin{dmath} \label{CS_P_I} CS\_P\_I(p, i) = \begin{dcases} \frac{CCQ\_P\_I(p, i)}{CCQ\_G\_I(i)} & \text{for $CCQ\_G\_I \neq 0$}\\ 0 & \text{for $CCQ\_G\_I = 0$}\\ \end{dcases} \end{dmath} \begin{dmath} \label{CCQ_G_I} CCQ\_G\_I(i) = \displaystyle \sum_{p \in MP(i)} CCQ\_P\_I(p, i) \end{dmath} \begin{dmath} \label{CCQ_P_I} CCQ\_P\_I(p, i) = CCQNDL\_P\_I(p, i) + \sum_{f \in REG\_F(p, i)} min(0, MS\_F\_I(f, i)) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead CS\_P\_I(p, i) & & P & I & 9.5.6 & Consumption share of participant p in Trading Interval i & (\ref{CS_P_I})\\ \hline CCQ\_P\_I(p, i) & MWh & P & I & 9.5.7 & Consumption Contributing Quantity for participant p in Trading Interval i & (\ref{CCQ_P_I})\\ \hline CCQ\_G\_I(i) & MWh & G & I & 9.5.8 & Sum of all Consumption Contributing Quantities in Trading Interval i & (\ref{CCQ_P_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 9.5.3, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline CCQNDL\_P\_I(p, i) & MWh & P & I & 9.5.7 & Sum of all Non-Dispatchable Load Metered Schedules that are negative for participant p in Trading Interval i & (\ref{CCQNDL_P_I})\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline \end{longtable} \subsection{Changed Outage Compensation} Changed Outage Compensation is split into two parts: \begin{itemize} \item Compensation paid to a Market Participant to cover the costs of a changed outage. \item Charge to Market Participants to recover the cost of outage compensation. \end{itemize} These equations are based on the equations stated in MR 9.11.\\ \begin{dmath} \label{OCSA_P_D} OCSA\_P\_D(p, d) = OCP\_P\_D(p, d) - OCR\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead OCSA\_P\_D(p, d) & \$ & P & D & 9.11.2 & Outage compensation settlement amount for participant p in Trading Day d & (\ref{OCSA_P_D})\\ \hline OCP\_P\_D(p, d) & \$ & P & D & 9.11.3 & Outage compensation payment for participant p in Trading Day d & (\ref{OCP_P_D})\\ \hline OCR\_P\_D(p, d) & \$ & P & D & 9.11.6 & Charge to fund outage compensation, for participant p in Trading Day d & (\ref{OCR_P_D})\\ \hline \end{longtable} \subsubsection{Outage Compensation Payments} \begin{dmath} \label{OCP_P_D} OCP\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} OCP\_P\_I(p, i) \end{dmath} \begin{dmath} \label{OCP_P_I} OCP\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} OCP\_F\_I(f, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead OCP\_P\_D(p, d) & \$ & P & D & 9.11.3 & Outage compensation payment for participant p in Trading Day d & (\ref{OCP_P_D})\\ \hline OCP\_P\_I(p, i) & \$ & P & I & 9.11.4 & Outage compensation payment for participant p in Trading Interval i & (\ref{OCP_P_I})\\ \hline OCP\_F\_I(f, i) & \$ & F & I & 3.18H.5(a) & Outage compensation payment for Facility f in Trading Interval i & I\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsubsection{Outage Compensation Charges (Recoverable)} \begin{dmath} \label{OCR_P_D} OCR\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} OCR\_P\_I(p, i) \end{dmath} \begin{dmath} \label{OCR_P_I} OCR\_P\_I(p, i) = OCP\_G\_I(i) \times CS\_P\_I(p, i) \end{dmath} \begin{dmath} \label{OCP_G_I} OCP\_G\_I(i) = \displaystyle \sum_{p \in MP(i)} OCP\_P\_I(p, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead OCR\_P\_D(p, d) & \$ & P & D & 9.11.6 & Charge to fund outage compensation, for participant p in Trading Day d & (\ref{OCR_P_D})\\ \hline OCR\_P\_I(p, i) & \$ & P & I & 9.11.7 & Charge to fund outage compensation, for participant p in Trading Interval i & (\ref{OCR_P_I})\\ \hline OCP\_G\_I(i) & \$ & G & I & 9.11.5 & Sum of all outage compensation payments in Trading Interval i & (\ref{OCP_G_I})\\ \hline OCP\_P\_I(p, i) & \$ & P & I & 9.11.4 & Outage compensation payment for participant p in Trading Interval i & (\ref{OCP_P_I})\\ \hline CS\_P\_I(p, i) & & P & I & 9.5.6 & Consumption share of participant p in Trading Interval i & (\ref{CS_P_I})\\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsection{RTM Suspension Compensation} Real-Time Market Suspension Compensation is split into the following parts: \begin{itemize} \item Market Participant Deficit Amount paid to a Market Participant to cover a shortfall during a suspension. \item Charge to Market Participants to recover the cost of a Market Suspension Deficit Amount. \item Charge to a Market Participant to recover a Market Participant Excess Amount. \item Market Suspension Excess Amount paid to Market Participants to redistribute the excess paid during a suspension. \end{itemize} These equations are based on the equations stated in MR 9.11A. \begin{dmath} \label{MSCSA_P_D} MSCSA\_P\_D(p, d) = MPDA\_P\_D(p, d) - MPEA\_P\_D(p, d) \\ - MSDAcharge\_P\_D(p, d) + MSEArebate\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MSCSA\_P\_D(p, d) & \$ & P & D & 9.11A.3 & Market suspension compensation settlement amount for participant p in Trading Day d & (\ref{MSCSA_P_D})\\ \hline MPDA\_P\_D(p, d) & \$ & P & D & 9.11A.4 & Market Participant Deficit Amount payable to participant p in Trading Day d & (\ref{MPDA_P_D})\\ \hline MPEA\_P\_D(p, d) & \$ & P & D & 9.11A.5 & Market Participant Excess Amount recoverable from participant p in Trading Day d & (\ref{MPEA_P_D})\\ \hline MSDAcharge\_P\_D(p, d) & \$ & P & D & 9.11A.6 & Market suspension deficit amount recoverable from participant p in Trading Day d & (\ref{MSDAcharge_P_D})\\ \hline MSEArebate\_P\_D(p, d) & \$ & P & D & 9.11A.9 & Market suspension excess amount payable to participant p in Trading Day d & (\ref{MSEArebate_P_D})\\ \hline \end{longtable} \subsubsection{RTM Suspension Compensation Payments} \begin{dmath} \label{MPDA_P_D} MPDA\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} MPDA\_P\_I(p, i) \end{dmath} \begin{dmath} \label{MSEArebate_P_D} MSEArebate\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} MSEArebate\_P\_I(p, i) \end{dmath} \begin{dmath} \label{MSEArebate_P_I} MSEArebate\_P\_I(p, i) = MSEA\_G\_I(i) \times CS\_P\_I(p, i) \end{dmath} \begin{dmath} \label{MSEA_G_I} MSEA\_G\_I(i) = \displaystyle \sum_{p \in MP(i)} MPEA\_P\_I(p, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MPDA\_P\_D(p, d) & \$ & P & D & 9.11A.4 & Market Participant Deficit Amount payable to participant p in Trading Day d & (\ref{MPDA_P_D})\\ \hline MSEArebate\_P\_D(p, d) & \$ & P & D & 9.11A.9 & Market suspension excess amount payable to participant p in Trading Day d & (\ref{MSEArebate_P_D})\\ \hline MSEArebate\_P\_I(p, i) & \$ & P & I & 9.11A.10 & Market suspension excess amount payable to participant p in Trading Interval i & (\ref{MSEArebate_P_I})\\ \hline CS\_P\_I(p, i) & & P & I & 9.5.6 & Consumption share of participant p in Trading Interval i & (\ref{CS_P_I})\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline MPDA\_P\_I(p, i) & \$ & P & D & 7.11B.1AC(f) & Market Participant Deficit Amount payable to participant p in Trading Interval i & I\\ \hline MPEA\_P\_I(p, i) & \$ & P & I & 7.11B.1AB(b) & Market Participant Excess Amount recoverable from participant p in Trading Interval i & I\\ \hline MSEA\_G\_I(i) & \$ & G & I & 9.11A.11 & Market suspension excess amount recoverable in Trading Interval i & (\ref{MSEA_G_I})\\ \hline \end{longtable} \subsubsection{RTM Suspension Compensation Charges (Recoverable)} \begin{dmath} \label{MPEA_P_D} MPEA\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} MPEA\_P\_I(p, i) \end{dmath} \begin{dmath} \label{MSDAcharge_P_D} MSDAcharge\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} MSDAcharge\_P\_I(p, i) \end{dmath} \begin{dmath} \label{MSDAcharge_P_I} MSDAcharge\_P\_I(p, i) = MSDA\_G\_I(i) \times CS\_P\_I(p, i) \end{dmath} \begin{dmath} \label{MSDA_G_I} MSDA\_G\_I(i) = \displaystyle \sum_{p \in MP(i)} MPDA\_P\_I(p, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MPEA\_P\_D(p, d) & \$ & P & D & 9.11A.5 & Market Participant Excess Amount recoverable from participant p in Trading Day d & (\ref{MPEA_P_D})\\ \hline MSDAcharge\_P\_D(p, d) & \$ & P & D & 9.11A.6 & Market suspension deficit amount recoverable from participant p in Trading Day d & (\ref{MSDAcharge_P_D})\\ \hline MSDAcharge\_P\_I(p, i) & \$ & P & I & 9.11A.7 & Market suspension deficit amount recoverable from participant p in Trading Interval i & (\ref{MSDAcharge_P_I})\\ \hline MSDA\_G\_I(i) & \$ & G & I & 9.11A.8 & Market suspension deficit amount recoverable in Trading Interval i & (\ref{MSDA_G_I})\\ \hline CS\_P\_I(p, i) & & P & I & 9.5.6 & Consumption share of participant p in Trading Interval i & (\ref{CS_P_I})\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline MPDA\_P\_I(p, i) & \$ & P & D & 7.11B.1AC(f) & Market Participant Deficit Amount payable to participant p in Trading Interval i & I\\ \hline MPEA\_P\_I(p, i) & \$ & P & I & 7.11B.1AB(b) & Market Participant Excess Amount recoverable from participant p in Trading Interval i & I\\ \hline \end{longtable} \subsection{Essential System Services} Essential System Services is split into the following parts: \begin{itemize} \item Contingency Raise payments, including SESSM Award payments and refunds \item Contingency Raise charges, including runway share \item Contingency Lower payments and charges \item RoCoF Control Service payments and charges, including Minimum RoCoF Requirement and Additional RoCoF Requirement \item Regulation Raise payments and charges \item Regulation Lower payments and charges \item Regulation Share \item System Restart Service payments and charges \item NCESS payments (Peak Capacity and non-Peak Capacity) and charges (non-Peak Capacity) \item FCESS Uplift payments \end{itemize} \begin{dmath} \label{ESSSA_P_D} ESSSA\_P\_D(p, d) = ESSpayment\_P\_D(p, d) - ESScharge\_P\_D(p, d) \end{dmath} \begin{dmath} \label{ESSpayment_P_D} ESSpayment\_P\_D(p, d) = CRpayment\_P\_D(p, d) + CLpayment\_P\_D(p, d) + RoCoFpayment\_P\_D(p, d) + RRpayment\_P\_D(p, d) + RLpayment\_P\_D(p, d) + SRSpayment\_P\_D(p, d) + NCESSpayment\_P\_D(p, d) + FCESSUpayment\_P\_D(p, d) \end{dmath} \begin{dmath} \label{ESScharge_P_D} ESScharge\_P\_D(p, d) = CRcharge\_P\_D(p, d) + CLcharge\_P\_D(p, d) + RoCoFcharge\_P\_D(p, d) + RRcharge\_P\_D(p, d) + RLcharge\_P\_D(p, d) + SRScharge\_P\_D(p, d) + NCESScharge\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead ESSSA\_P\_D(p, d) & \$ & P & D & 9.10.2 & Essential System Services settlement amount for participant p for Trading Day d & (\ref{ESSSA_P_D})\\ \hline ESSpayment\_P\_D(p, d) & \$ & P & D & 9.10.3 & Essential System Service amount payable to participant p for Trading Day d & (\ref{ESSpayment_P_D})\\ \hline ESScharge\_P\_D(p, d) & \$ & P & D & 9.10.28 & Essential System Service amount recoverable from participant p for Trading Day d & (\ref{ESScharge_P_D})\\ \hline CRpayment\_P\_D(p, d) & \$ & P & D & 9.10.4 & Contingency Reserve Raise amount payable to participant p for Trading Day d & (\ref{CRpayment_P_D})\\ \hline CLpayment\_P\_D(p, d) & \$ & P & D & 9.10.8 & Contingency Reserve Lower amount payable to participant p for Trading Day d & (\ref{CLpayment_P_D})\\ \hline RoCoFpayment\_P\_D(p, d) & \$ & P & D & 9.10.12 & RoCoF Control Service amount payable to participant p for Trading Day d & (\ref{RoCoFpayment_P_D})\\ \hline RRpayment\_P\_D(p, d) & \$ & P & D & 9.10.20 & Regulation Raise amount payable to participant p for Trading Day d & (\ref{RRpayment_P_D})\\ \hline RLpayment\_P\_D(p, d) & \$ & P & D & 9.10.20 & Regulation Lower amount payable to participant p for Trading Day d & (\ref{RLpayment_P_D})\\ \hline SRSpayment\_P\_D(p, d) & \$ & P & D & 9.10.25 & System Restart Service amount payable to participant p for Trading Day d & (\ref{SRSpayment_P_D})\\ \hline NCESSpayment\_P\_D(p, d) & \$ & P & D & 9.10.27A & NCESS amount payable to participant p for Trading Day d & (\ref{NCESSpayment_P_D})\\ \hline FCESSUpayment\_P\_D(p, d) & \$ & P & D & 9.10.3A & FCESS Uplift Payment amount payable to participant p for Trading Day d & (\ref{FCESSUpayment_P_D})\\ \hline CRcharge\_P\_D(p, d) & \$ & P & D & 9.10.29 & Contingency Reserve Raise amount recoverable from participant p for Trading Day d & (\ref{CRcharge_P_D})\\ \hline CLcharge\_P\_D(p, d) & \$ & P & D & 9.10.31 & Contingency Reserve Lower amount recoverable from participant p for Trading Day d & (\ref{CLcharge_P_D})\\ \hline RoCoFcharge\_P\_D(p, d) & \$ & P & D & 9.10.33 & RoCoF Control Service amount recoverable from participant p for Trading Day d & (\ref{RoCoFcharge_P_D})\\ \hline RRcharge\_P\_D(p, d) & \$ & P & D & 9.10.35 & Regulation Raise amount recoverable from participant p for Trading Day d & (\ref{RRcharge_P_D})\\ \hline RLcharge\_P\_D(p, d) & \$ & P & D & 9.10.35 & Regulation Lower amount recoverable from participant p for Trading Day d & (\ref{RLcharge_P_D})\\ \hline SRScharge\_P\_D(p, d) & \$ & P & D & 9.10.40 & System Restart Service amount recoverable from participant p for Trading Day d & (\ref{SRScharge_P_D})\\ \hline NCESScharge\_P\_D(p, d) & \$ & P & D & 9.10.44 & NCESS amount recoverable from participant p for Trading Day d & (\ref{NCESScharge_P_D})\\ \hline \end{longtable} \subsubsection{Contingency Raise Payments} \begin{dmath} \label{CRpayment_P_D} CRpayment\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CRpayment\_P\_I(p, i) \end{dmath} \begin{dmath} \label{CRpayment_P_I} CRpayment\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} CRpayment\_F\_I(f, i) \end{dmath} \begin{dmath} \label{CRpayment_F_I} CRpayment\_F\_I(f, i) = \displaystyle \sum_{di \in DI(i)} CRpayment\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{CRpayment_F_DI} CRpayment\_F\_DI(f, di) = CRenablement\_F\_DI(f, di) + CRavailability\_F\_DI(f, di) - CRrefund\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{CRenablement_F_DI} CRenablement\_F\_DI(f, di) = \frac{5}{60}h \times FCRprice\_G\_DI(di) \times CRquantity\_F\_DI(f, di) \times FPFCR\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{CRquantity_F_DI} CRquantity\_F\_DI(f, di) = \begin{dcases} ESSEQCR\_F\_DI(f, di) & \text{for $CRestFlag\_F\_DI(f, di) = 0$}\\ ESSEQCRest\_F\_DI(f, di) & \text{for $CRestFlag\_F\_DI(f, di) = 1$} \end{dcases} \end{dmath} \begin{dmath} \label{CRavailability_F_DI} CRavailability\_F\_DI(f, di) = \displaystyle \sum_{sa \in ACR(f, di)} AP\_SA\_DI(sa, di) \end{dmath} \begin{dmath} \label{CRrefund_F_DI} CRrefund\_F\_DI(f, di) = \displaystyle \sum_{sa \in ACR(f, di)} Refund\_SA\_DI(sa, di) \end{dmath} \begin{longtable}{|p{3.9cm}|p{1.3cm}|p{0.5cm}|p{0.5cm}|p{1.6cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead CRpayment\_P\_D(p, d) & \$ & P & D & 9.10.4 & Contingency Reserve Raise amount payable to participant p for Trading Day d & (\ref{CRpayment_P_D})\\ \hline CRpayment\_P\_I(p, i) & \$ & P & I & 9.10.4 & Contingency Reserve Raise amount payable to participant p in Trading Interval i & (\ref{CRpayment_P_I})\\ \hline CRpayment\_F\_I(f, i) & \$ & F & I & 9.10.5 & Contingency Reserve Raise amount payable to Facility f in Trading Interval i & (\ref{CRpayment_F_I})\\ \hline CRpayment\_F\_DI(f, di) & \$ & F & DI & 9.10.6 & Contingency Reserve Raise amount payable to Facility f in Dispatch Interval di & (\ref{CRpayment_F_DI})\\ \hline CRenablement\_F\_DI(f, di) & \$ & F & DI & 9.10.6 & Contingency Reserve Raise amount payable for enablement to Facility f in Dispatch Interval di & (\ref{CRenablement_F_DI})\\ \hline CRavailability\_F\_DI(f, di) & \$ & F & DI & App 2C 2.8(a)iii & Contingency Reserve Raise amount payable for availability to Facility f in Dispatch Interval di & (\ref{CRavailability_F_DI})\\ \hline AP\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.2(c) & SESSM Availability Payment under SESSM Award sa in Dispatch Interval di & (\ref{AP_SA_DI})\\ \hline Refund\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.6 & SESSM refund under SESSM Award sa in Dispatch Interval di & (\ref{Refund_SA_DI})\\ \hline CRrefund\_F\_DI(f, di) & \$ & F & DI & App 2C 2.8(b)iii & Facility SESSM Refund for Contingency Reserve Raise for Facility f in Dispatch Interval di & (\ref{CRrefund_F_DI})\\ \hline FCRprice\_G\_DI(di) & \$/MW/h & G & DI & Ch 11 & Final Contingency Reserve Raise Market Clearing Price in Dispatch Interval di & I\\ \hline CRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.6(c) & Contingency Reserve Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{CRquantity_F_DI})\\ \hline CRestFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.6(c)ii & Flag that is 1 when AEMO's reasonable estimate of Facility f's ability to provide Contingency Reserve Raise in Dispatch Interval di is used, and 0 otherwise & I\\ \hline ESSEQCR\_F\_DI(f, di) & MW & F & DI & 9.10.6(c)i & Essential System Service Enablement Quantity for Contingency Reserve Raise for Facility f in Dispatch Interval di & I\\ \hline ESSEQCRest\_F\_DI(f, di) & MW & F & DI & 9.10.6(c)ii & AEMO's estimate of capability of Facility f to provide Contingency Reserve Raise in Dispatch Interval di & I\\ \hline FPFCR\_F\_DI(f, di) & & F & DI & 9.10.6(d) & Facility Performance Factor for Contingency Reserve Raise for Facility f in Dispatch Interval di & I\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline ACR(d) & \{\} & G & D & Ch 11 & Set of SESSM Awards for Contingency Reserve Raise on Trading Day d & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline \end{longtable} \paragraph{SESSM Award Availability Payments} A SESSM Award is granted to a Market Participant in relation to a Facility to provide a specific FCESS. In the first three years of operation of the market, a SESSM Award Duration is restricted to a maximum of 1 year and a maximum of 3 years thereafter. A SESSM Award Duration is Trading Day based but may not align with a Trading Week or a Trading Month or a Capacity Year. A SESSM Award Duration is represented in the formulas as a Trading Day range, where the function $SArange(sa)$ is used to return the full time range of the relevant SESSM Award i.e. from Trading Day, to Trading Day. \begin{dmath} \label{AP_SA_DI} AP\_SA\_DI(sa, di) = \begin{dcases} PDIAP\_SA\_X(sa, SArange(sa)) & \text{$AQ\_SA\_DI(sa, di) > 0$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead AP\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.2(c) & SESSM Availability Payment under SESSM Award sa in Dispatch Interval di & (\ref{AP_SA_DI})\\ \hline AQ\_SA\_DI(sa, di) & MW or MWs & SA & DI & Ch 11 & SESSM Availability Quantity for SESSM Award sa in Dispatch Interval di & I\\ \hline PDIAP\_SA\_X(sa, x) & \$ & SA & X & App 2C 2.2(c)i & Per-Dispatch Interval Availability Payment for SESSM Award sa for SESSM Award Duration x & I\\ \hline \end{longtable} \paragraph{SESSM Award Refunds} \begin{dmath} \label{Refund_SA_DI} Refund\_SA\_DI(sa, di) = \begin{dcases} 0 & \scalebox{0.8}{\text{if $isRefundExempt\_SA\_DI(sa, di) = 1$}}\\ & \scalebox{0.8}{\text{or $RTMSuspFlag\_G\_DI(di) = 1$}} \\ min\bigg(AP\_SA\_DI(sa, di) \times RefundFactor\_G\_D(di) \times Shortfall\_SA\_DI(sa, di), & \text{otherwise} \\ PaymentCap\_SA\_X(sa, SArange(sa)) - CumRefund\_SA\_DI(sa, di)\bigg) & \\ \end{dcases} \end{dmath} \begin{dmath} \label{RefundFactor_G_D} RefundFactor\_G\_D(d) = 3 \end{dmath} \begin{dmath} \label{CumRefund_SA_DI} CumRefund\_SA\_DI(sa, di) = CumRefundStart\_SA\_D(sa, di) + \displaystyle \sum_{j \in PDITD(di)} Refund\_SA\_DI(sa, j) \end{dmath} \begin{dmath} \label{Shortfall_SA_DI} Shortfall\_SA\_DI(sa, di) = \begin{dcases} \scalebox{0.9}{$max \left(0, \frac{AQ\_SA\_DI(sa, di) - max\bigg(0, Offer\_FE\_DI(SA2FE(sa), DI) - BaseQuantity\_SA\_DI(sa, di)\bigg)}{AQ\_SA\_DI(sa, di)} \right)$} & \scalebox{0.9}{\text{if $AQ\_SA\_DI(sa, di) \neq 0$}}\\ 0 & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{PaymentCap_SA_X} PaymentCap\_SA\_X(sa, SArange(sa)) = \displaystyle \sum_{di \in SESSMDI(sa)} AP\_SA\_DI(sa, di) \end{dmath} \begin{longtable}{|p{4.6cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.4cm}|p{5.8cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead Refund\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.6 & SESSM refund under SESSM Award sa in Dispatch Interval di & (\ref{Refund_SA_DI})\\ \hline AP\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.2(c) & SESSM Availability Payment under SESSM Award sa in Dispatch Interval di & (\ref{AP_SA_DI})\\ \hline RefundFactor\_G\_D(d) & & G & D & App 2C 2.6(e) & SESSM refund factor for Trading Day d & (\ref{RefundFactor_G_D})\\ \hline isRefundExempt\_SA\_DI(sa, di) & Flag & SA & DI & & Flag that is 1 when SESSM Award sa is not subject to refunds in Dispatch Interval di, and 0 otherwise & (\ref{isRefundExempt_SA_DI}) \\ \hline Shortfall\_SA\_DI(sa, di) & MW or MWs & SA & DI & App 2C 2.7 & SESSM shortfall for SESSM Award sa in Dispatch Interval di & (\ref{Shortfall_SA_DI})\\ \hline PaymentCap\_SA\_X(sa, x) & \$ & SA & X & App 2C 2.3(c) & Total SESSM Availability payments that would be made over the SESSM Service Timing if it met its SESSM Availability Requirement under SESSM Award sa for SESSM Award Duration x & (\ref{PaymentCap_SA_X})\\ \hline CumRefund\_SA\_DI(sa, di) & \$ & SA & DI & & Cumulative SESSM refunds under SESSM Award sa up to, but excluding, Dispatch Interval di & (\ref{CumRefund_SA_DI})\\ \hline CumRefundStart\_SA\_D(sa, d) & \$ & SA & D & & Cumulative SESSM refunds under SESSM Award sa prior to Trading Day d & I\\ \hline AQ\_SA\_DI(sa, di) & MW or MWs & SA & DI & Ch 11 & SESSM Availability Quantity for SESSM Award sa in Dispatch Interval di & I\\ \hline Offer\_FE\_DI(f, e, di) & MW or MWs & FE & DI & App 2C 2.4(a) & Sum of quantities offered (or AEMO's reasonable estimate of) by Facility f, for Essential System Service e in Dispatch Interval di & I\\ \hline BaseQuantity\_SA\_DI(sa, di) & MW or MWs & SA & DI & Ch 11 & Base ESS Quantity for SESSM Award sa in Dispatch Interval di & I\\ \hline SESSMDI(sa) & \{\} & SA & X & App 2C 2.3(c)i & Set of all Dispatch Intervals in the SESSM Service Timing for SESSM Award sa & I\\ \hline PDITD(di) & \{\} & G & DI & & Set of Dispatch Intervals in the same Trading Day as, but prior to, Dispatch Interval di & I\\ \hline \end{longtable} \paragraph{SESSM Award Refund Exempt} \begin{dmath} \label{isRefundExempt_SA_DI} isRefundExempt\_SA\_DI(sa, di) = \begin{dcases} 1 & \scalebox{0.9}{\text{if $isSufficientlyAvailable\_SA\_DI(sa, di) + isAtRefundCap\_SA\_DI(sa, di) + isNotObliged\_SA\_DI(sa, di) > 0$}}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{isNotObliged_SA_DI} isNotObliged\_SA\_DI(sa, di) = \begin{dcases} 1 & \text{$AQ\_SA\_DI(sa, di) = 0$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{isAtRefundCap_SA_DI} isAtRefundCap\_SA\_DI(sa, di) = \begin{dcases} 1 & \scalebox{0.9}{\text{$CumRefund\_SA\_DI(sa, di) \geq PaymentCap\_SA\_X(sa, SArange(sa))$}}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{isSufficientlyAvailable_SA_DI} isSufficientlyAvailable\_SA\_DI(sa, di) = \begin{dcases} 1 & \scalebox{0.9}{\text{$OutageCount\_SA\_DI(sa, di) \leq MaxUnavailability\_SA\_X(sa, SArange(sa))$}}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{isAvailable_SA_DI} isAvailable\_SA\_DI(sa, di) = \begin{dcases} 1 & \text{if $Offer\_FE\_DI(SA2FE(sa), di) \geq (BaseQuantity\_SA\_DI(sa, di) + AQ\_SA\_DI(sa, di))$} \\ & \text{or $AQ\_SA\_DI(sa, di) = 0$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{OutageCount_SA_DI} OutageCount\_SA\_DI(sa, di) = \sum_{j \in SESSMDI(sa), j \leq di} (1 - isAvailable\_SA\_DI(sa, j)) \end{dmath} \begin{dmath} \label{MaxUnavailability_SA_X} MaxUnavailability\_SA\_X(sa, SArange(sa)) = floor\bigg(N\_SA\_X(sa, SArange(sa)) \\ \times (1 - MinAvailability\_SA\_X(sa, SArange(sa)))\bigg) \end{dmath} \begin{dmath} \label{N_SA_X} N\_SA\_X(sa, SArange(sa)) = \sum_{di \in SESSMDI(sa)} isAQpositive\_SA\_DI(sa, di) \end{dmath} \begin{dmath} \label{isAQpositive_SA_DI} isAQpositive\_SA\_DI(sa, di) = \begin{dcases} 1 & \text{for $AQ\_SA\_DI(sa, di) > 0$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4.6cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.4cm}|p{5.8cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead isRefundExempt\_SA\_DI(sa, di) & Flag & SA & DI & & Flag that is 1 when SESSM Award sa is not subject to refunds in Dispatch Interval di, and 0 otherwise & (\ref{isRefundExempt_SA_DI}) \\ \hline isSufficientlyAvailable\_SA\_DI(sa, di) & Flag & SA & DI & & Flag that is 1 when SESSM Award sa has been sufficiently available up to and including Dispatch Interval di, and 0 otherwise & (\ref{isSufficientlyAvailable_SA_DI}) \\ \hline isAtRefundCap\_SA\_DI(sa, di) & Flag & SA & DI & & Flag that is 1 when SESSM Award sa has reached its payment cap by Dispatch Interval di, and 0 otherwise & (\ref{isAtRefundCap_SA_DI}) \\ \hline isNotObliged\_SA\_DI(sa, di) & Flag & SA & DI & & Flag that is 1 when SESSM Award sa is not obliged to provide a service in Dispatch Interval di, and 0 otherwise & (\ref{isNotObliged_SA_DI}) \\ \hline OutageCount\_SA\_DI(sa, di) & & SA & DI & App 2C 2.5 & Number of Dispatch Intervals that the Facility has been unavailable for under SESSM Award sa, up to and including Dispatch Interval di & (\ref{OutageCount_SA_DI})\\ \hline MaxUnavailability\_SA\_X(sa, x) & & SA & X & App 2C 2.3(b) & Number of Dispatch Intervals for which the relevant Facility may be unavailable under SESSM Award sa for SESSM Award Duration x & (\ref{MaxUnavailability_SA_X})\\ \hline MinAvailability\_SA\_X(sa, x) & & SA & X & Ch 11 & SESSM Availability Requirement for SESSM Award sa for SESSM Award Duration x & I\\ \hline isAvailable\_SA\_DI(sa, di) & Flag & SA & DI & App 2C 2.5(a) & Flag that is 1 when the Facility associated with SESSM Award sa was available in respect of its obligations under SESSM Award sa to provide the relevant Frequency Co-optimised Essential System Service in Dispatch Interval di, and 0 otherwise & (\ref{isAvailable_SA_DI})\\ \hline BaseQuantity\_SA\_DI(sa, di) & MW or MWs & SA & DI & Ch 11 & Base ESS Quantity for SESSM Award sa in Dispatch Interval di & I\\ \hline N\_SA\_X(sa, x) & & SA & X & App 2C 2.3(a) & Number of Dispatch Intervals with a positive SESSM Availability Quantity for SESSM Award sa for SESSM Award Duration x & (\ref{N_SA_X})\\ \hline isAQpositive\_SA\_DI(sa, di) & Flag & SA & DI & & Flag that is 1 when SESSM Availability Quantity is positive for SESSM Award sa in Dispatch Interval di, and 0 otherwise & (\ref{isAQpositive_SA_DI})\\ \hline AQ\_SA\_DI(sa, di) & MW or MWs & SA & DI & Ch 11 & SESSM Availability Quantity for SESSM Award sa in Dispatch Interval di & I\\ \hline PaymentCap\_SA\_X(sa, x) & \$ & SA & X & App 2C 2.3(c) & Total SESSM Availability payments that would be made over the SESSM Service Timing if it met its SESSM Availability Requirement under SESSM Award sa for SESSM Award Duration x & (\ref{PaymentCap_SA_X})\\ \hline CumRefund\_SA\_DI(sa, di) & \$ & SA & DI & & Cumulative SESSM refunds under SESSM Award sa up to, but excluding, Dispatch Interval di & (\ref{CumRefund_SA_DI})\\ \hline SESSMDI(sa) & \{\} & SA & X & App 2C 2.3(c)i & Set of all Dispatch Intervals in the SESSM Service Timing for SESSM Award sa & I\\ \hline \end{longtable} \subsubsection{Contingency Raise Charges (Recoverable)} \begin{dmath} \label{CRcharge_P_D} CRcharge\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CRcharge\_P\_I(p, i) \end{dmath} \begin{dmath} \label{CRcharge_P_I} CRcharge\_P\_I(p, i) = \displaystyle \sum_{di \in DI(i)} CRcharge\_P\_DI(p, di) \end{dmath} \begin{dmath} \label{CRcharge_P_DI} CRcharge\_P\_DI(p, di) = \begin{dcases} RTMSuspShare\_P\_DI(p, di) \times CRpayment\_G\_DI(di) & \text{if $RTMSuspFlag\_G\_DI(di) = 1$} \\ TRS\_P\_DI(p, di) \times CRpayment\_G\_DI(di) & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{CRpayment_G_DI} CRpayment\_G\_DI(di) = \sum_{f \in REG\_F(di)} CRpayment\_F\_DI(f, di) + \sum_{f \in REG\_F(di)} FCESSUShareCR\_F\_DI(f, di) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead CRcharge\_P\_D(p, d) & \$ & P & D & 9.10.29 & Contingency Reserve Raise amount recoverable from participant p for Trading Day d & (\ref{CRcharge_P_D})\\ \hline CRcharge\_P\_I(p, i) & \$ & P & I & 9.10.30 & Contingency Reserve Raise amount recoverable from participant p in Trading Interval i & (\ref{CRcharge_P_I})\\ \hline CRcharge\_P\_DI(p, di) & \$ & P & DI & 9.10.30 & Contingency Reserve Raise amount recoverable from participant p in Dispatch Interval di & (\ref{CRcharge_P_DI})\\ \hline CRpayment\_G\_DI(di) & \$ & G & DI & 9.10.7 & Contingency Reserve Raise amount payable in Dispatch Interval di & (\ref{CRpayment_G_DI})\\ \hline CRpayment\_F\_DI(f, di) & \$ & F & DI & 9.10.6 & Contingency Reserve Raise amount payable to Facility f in Dispatch Interval di & (\ref{CRpayment_F_DI})\\ \hline RTMSuspShare\_P\_DI(p, di) & & P & I & 9.10.30A & Real-Time Market suspension share for participant p in Dispatch Interval di & (\ref{RTMSuspShare_P_DI}) \\ \hline TRS\_P\_DI(p, di) & & P & DI & App 2A 5.3 & Total runway share for participant p in Dispatch Interval di & (\ref{TRS_P_DI})\\ \hline FCESSUShareCR\_F\_DI(f, di) & \$ & F & DI & 9.10.3K & Share of FCESS Uplift Payments to be allocated to Contingency Reserve Raise for Facility f in Dispatch Interval di & (\ref{FCESSUShareCR_F_DI})\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline \end{longtable} \paragraph{Total Runway Share} \begin{dmath} \label{TRS_P_DI} TRS\_P\_DI(p, di) = FShare\_P\_DI(p, di) + NShare\_P\_DI(p, di) \end{dmath} \begin{dmath} \label{FShare_P_DI} FShare\_P\_DI(p, di) = \displaystyle \sum_{f \in AF\_DI(p, di)} FShare\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{FShare_F_DI} FShare\_F\_DI(f, di) = FShare\_G\_DI(di) \times FRS\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{FShare_G_DI} FShare\_G\_DI(di) = 1 - NShare\_G\_DI(di) \end{dmath} \begin{dmath} \label{NShare_G_DI} NShare\_G\_DI(di) = \begin{cases} \frac{max(0, LNR\_G\_DI(di) - LFR\_G\_DI(di))}{LNR\_G\_DI(di)} & \text{for $LNR\_G\_DI(di) \neq 0$}\\ 0 & \text{for $LNR\_G\_DI(di) = 0$} \end{cases} \end{dmath} \begin{dmath} \label{NShare_P_DI} NShare\_P\_DI(p, di) = \sum_{nc \in ANC\_DI(di)} \sum_{f \in CF\_NC\_DI(p, nc, di)} NShare\_FNC\_DI(f, nc, di) \end{dmath} \begin{dmath} \label{NShare_FNC_DI} NShare\_FNC\_DI(f, nc, di) = \frac{NShare\_G\_DI(di)}{M\_G\_DI(di)} \times NRS\_FNC\_DI(f, nc, di) \end{dmath} \begin{equation} \label{M_G_DI} M\_G\_DI(di) = \abs{ANC\_DI(di)} \end{equation} \begin{equation} \label{ANC_DI} ANC\_DI(di) = \{nc \in NC\_DI(di) : NRisk\_NC\_DI(nc, di) > 0MW\} \end{equation} \begin{dmath} \label{NRisk_NC_DI} NRisk\_NC\_DI(nc, di) = \begin{dcases} NR\_NC\_DI(di) & \text{for $nc \in LCSC(di)$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead TRS\_P\_DI(p, di) & & P & DI & App 2A 5.3 & Total runway share for participant p in Dispatch Interval di & (\ref{TRS_P_DI})\\ \hline FShare\_P\_DI(p, di) & & P & DI & App 2A 5.3(a) & Runway share related to the facility component for participant p in Dispatch Interval di & (\ref{FShare_P_DI}) \\ \hline FShare\_F\_DI(f, di) & & F & DI & & Runway share related to the facility component for Facility f in Dispatch Interval di & (\ref{FShare_F_DI}) \\ \hline FShare\_G\_DI(di) & & G & DI & App 2A 5.1(b) & Runway share related to the facility component in Dispatch Interval di & (\ref{FShare_G_DI}) \\ \hline FRS\_F\_DI(f, di) & & F & DI & App 2A 3.3 & Facility runway share for Facility f in Dispatch Interval di & (\ref{FRS_F_DI}) \\ \hline NShare\_G\_DI(di) & & G & DI & App 2A 5.1(a) & Runway share related to the network component in Dispatch Interval di & (\ref{NShare_G_DI}) \\ \hline LNR\_G\_DI(di) & MW & G & DI & App 2A 5.1(i) & The largest Network Risk associated with the Largest Credible Supply Contingency in Dispatch Interval di & I \\ \hline LFR\_G\_DI(di) & MW & G & DI & App 2A 3.2 & The largest runway facility risk associated with the applicable facilities in Dispatch Interval di & (\ref{LFR_G_DI}) \\ \hline NShare\_P\_DI(p, di) & & P & DI & App 2A 5.3(b) & Runway share related to the network component for participant p in Dispatch Interval di & (\ref{NShare_P_DI}) \\ \hline NShare\_FNC\_DI(f, nc, di) & & FNC & DI & & Runway share for Facility f related to the Network Contingency nc in Dispatch Interval di & (\ref{NShare_FNC_DI}) \\ \hline M\_G\_DI(di) & & G & DI & App 2A 4.4 & Number of applicable Network Contingencies in Dispatch Interval di & (\ref{M_G_DI}) \\ \hline NRS\_FNC\_DI(f, nc, di) & & FNC & DI & App 2A 4.5(c) & Network runway share for Facility f in relation to Network Contingency nc in Dispatch Interval di & (\ref{NRS_FNC_DI}) \\ \hline NRisk\_NC\_DI(nc, di) & MW & NC & DI & App 2A 4.2 & The runway network risk for Network Contingency nc in Dispatch Interval di & (\ref{NRisk_NC_DI}) \\ \hline NR\_NC\_DI(nc, di) & MW & NC & DI & 7.13.1EA(c)ii.1 & Network Risk for Network Contingency nc in Dispatch Interval di & I \\ \hline AF\_DI(di) & \{\} & G & DI & App 2A 2.3 & Set of applicable facilities in Dispatch Interval di & (\ref{AF_DI}) \\ \hline ANC\_DI(di) & \{\} & G & DI & App 2A 4.3 & Set of applicable Network Contingencies in Dispatch Interval di & (\ref{ANC_DI}) \\ \hline NC\_DI(di) & \{\} & G & DI & App 2A 4.1 & Set of Network Contingencies that were taken into account when setting the Contingency Reserve Raise requirement in Dispatch Interval di & I \\ \hline CF\_NC\_DI(nc, di) & \{\} & NC & DI & App 2A 4.5(a) & Set of causer facilities that are applicable facilities or additional applicable facilities associated with Network Contingency nc in Dispatch Interval di & (\ref{CF_NC_DI}) \\ \hline LCSC(di) & \{\} & G & DI & Ch 11 & Set of Network Contingencies that set the Largest Credible Supply Contingency in Dispatch Interval di & I \\ \hline \end{longtable} \paragraph{Facility Runway Share} This section calculates the facility runway shares for Facilities deemed to be causers of Facility Contingencies. Each Facility is ranked in ascending order of their Facility Risk value and allocated a runway share based on that rank. \begin{dmath} \label{FRS_F_DI} FRS\_F\_DI(f, di) = \sum_{r = 1}^{FRrank\_F\_DI(f, di)} \frac{\bigg( \frac{FRisk\_F\_DI(AF[r], di) - FRisk\_F\_DI(AF[r-1], di)}{LFR\_G\_DI(di)} \bigg)}{MAXr\_G\_DI(di) - r + 1}, \scalebox{0.9}{\text{where $FRisk\_F\_DI(AF[0],di) = 0$}}\\ \end{dmath} \begin{dmath} \label{FRrank_F_DI} FRrank\_F\_DI(f, di) = \text{Position of applicable facility $f$ in $AFordered\_G\_DI(di)$} \end{dmath} \begin{dmath} \label{AFordered_G_DI} AFordered\_G\_DI(di) = AF\_DI(di) \ \text{ordered by ascending $FRisk\_F\_DI(f, di)$ and then alphabetically} \end{dmath} The expression $AF[r]$ returns the $r$-th element of the set $AFordered\_G\_DI(di)$ and the following equation shows the interaction between $AFordered\_G\_DI(di)$, $FRrank\_F\_DI(f, di)$ and $AF[r]$: \begin{dmath} \label{AF[r]} AF[FRrank\_F\_DI(f, di)] = f \end{dmath} \begin{dmath} \label{MAXr_G_DI} MAXr\_G\_DI(di) = \abs{AF\_DI(di)} \end{dmath} \begin{dmath} \label{LFR_G_DI} LFR\_G\_DI(di) = FRisk\_F\_DI(AF[MAXr\_G\_DI(di)], di) \end{dmath} \begin{equation} \label{AF_DI} AF\_DI(di) = \{ f \in App2AF\_DI(di) : FRisk\_F\_DI(f, di) \geq 10MW \} \end{equation} \begin{equation} \label{AFadditional_DI} AFadditional\_DI(di) = \{ f \in App2AIML\_DI(di) : FRisk\_F\_DI(f, di) \geq 10MW \} \end{equation} \begin{dmath} \label{FRisk_F_DI} FRisk\_F\_DI(f, di) = \begin{dcases} FR\_F\_DI(f, di) & \text{for $f \in App2AIML\_DI(di) \cup App2AFa(di) \cup App2AFb\_DI(di)$}\\ \frac{SCADAIML\_F\_DI(f, di-1)}{5/60h} & \text{for $f \in App2AFc\_DI(di)$}\\ 0 & \text{otherwise}\\ \end{dcases} \end{dmath} Identify which facilities will be included for the purposes of cost allocation:\\ \begin{dmath} \label{App2AIML_DI} App2AIML\_DI(di) = App2AFbc(d) \cap \overline{App2AF\_DI(di)} \end{dmath} \begin{dmath} \label{App2AF_DI} App2AF\_DI(di) = App2AFa(di) \cup App2AFb\_DI(di) \cup App2AFc\_DI(di) \end{dmath} \begin{dmath} \label{App2AFa} App2AFa(d) = (SF(d) \cup SSF(d)) \cap \overline{EG(d)} \end{dmath} \begin{dmath} \label{App2AFbc} App2AFbc(d) = ((SF(d) \cup SSF(d) \cup NSF(d)) \cap EG(d)) \cup IML(d) \end{dmath} \begin{dmath} \label{App2AFb_DI} App2AFb\_DI(di) = App2AFbc(d) \cap \overline{App2AFc\_DI(di)} \end{dmath} \begin{longtable}{|p{3.6cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{2.2cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead FRS\_F\_DI(f, di) & & F & DI & App 2A 3.3 & Facility runway share for Facility f in Dispatch Interval di & (\ref{FRS_F_DI}) \\ \hline FRrank\_F\_DI(f, di) & & F & DI & App 2A 3.3(b) & The element number of Facility f in the set of applicable facilities, where 1 is the applicable facility with the lowest Facility Risk in Dispatch Interval di & (\ref{FRrank_F_DI}) \\ \hline AFordered\_G\_DI(di) & \{\} & G & DI & App 2A 3.1 & Ordered set of applicable facilities in Dispatch Interval di (ordered by ascending Facility Risk) & (\ref{AFordered_G_DI}) \\ \hline AF[r] & & G & DI & App 2A 3.1 & The r-th element of the set $AFordered\_G\_DI$ in Dispatch Interval di & (\ref{AF[r]}) \\ \hline MAXr\_G\_DI(di) & & G & DI & App 2A 3.3(c) & Number of applicable facilities in Dispatch Interval di & (\ref{MAXr_G_DI}) \\ \hline LFR\_G\_DI(di) & MW & G & DI & App 2A 3.2 & Largest runway facility risk associated with the applicable facilities in Dispatch Interval di & (\ref{LFR_G_DI}) \\ \hline AF\_DI(di) & \{\} & G & DI & App 2A 2.3 & Set of applicable facilities in Dispatch Interval di & (\ref{AF_DI}) \\ \hline AFadditional\_DI(di) & \{\} & G & DI & App 2A 2.4 & Set of additional applicable facilities in Dispatch Interval di & (\ref{AFadditional_DI}) \\ \hline FRisk\_F\_DI(f, di) & MW & F & DI & App 2A 2.2 & The runway facility risk for Facility f in Dispatch Interval di & (\ref{FRisk_F_DI}) \\ \hline App2AIML\_DI(di) & \{\} & G & DI & App 2A 2.1A & Set of facilities (identified in Appendix 2A 2.1A) to be included in the runway share calculation in Dispatch Interval di & (\ref{App2AIML_DI}) \\ \hline App2AF\_DI(di) & \{\} & G & DI & App 2A 2.1 & Set of facilities (identified in Appendix 2A 2.1) to be included in the runway share calculation in Dispatch Interval di & (\ref{App2AF_DI}) \\ \hline App2AFa(d) & \{\} & G & D & App 2A 2.1(a) & Set of facilities (identified in Appendix 2A 2.1(a)) to be included in the runway share calculation in Trading Day d & (\ref{App2AFa}) \\ \hline App2AFbc(d) & \{\} & G & D & App 2A 2.1(b), 2.1(c) & Set of facilities (identified in Appendix 2A 2.1(b) and 2.1(c)) to be included in the runway share calculation in Trading Day d & (\ref{App2AFbc}) \\ \hline App2AFb\_DI(di) & \{\} & G & DI & App 2A 2.1(b) & Set of facilities (identified in Appendix 2A 2.1(b)) to be included in the runway share calculation in Dispatch Interval di & (\ref{App2AFb_DI}) \\ \hline App2AFc\_DI(di) & \{\} & G & DI & App 2A 2.1(c) & Set of facilities (identified in Appendix 2A 2.1(c)) to be included in the runway share calculation in Dispatch Interval di & I \\ \hline EG(d) & \{\} & G & D & 2.30B.2(a) & Set of Registered Facilities that serve an Intermittent Load in Trading Day d & (\ref{EG})\\ \hline FR\_F\_DI(f, di) & MW & F & DI & 7.13.1EA(c)i & Facility Risk for Facility f in Dispatch Interval di & I \\ \hline NSF(d) & \{\} & G & D & Ch 11 & Set of Non-Scheduled Facilities in Trading Day d & (\ref{NSF}) \\ \hline SCADAIML\_F\_DI(f, di) & MWh & F & DI & 7.13.1E(a)v & Net generation measured by SCADA for the Energy Producing System supplying Intermittent Load f in Dispatch Interval di, non-loss adjusted & I\\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline \end{longtable} \paragraph{Network Runway Share} This section calculates the Network Contingency runway shares for Registered Facilities deemed to be causers of Network Contingencies. Each Registered Facility that is a member of the set of causer facilities is ranked in ascending order of their Facility Risk value and allocated a runway share based on that rank. \begin{dmath} \label{NRS_FNC_DI} NRS\_FNC\_DI(f, nc, di) = \sum_{r = 1}^{NRrank\_FNC\_DI(f, nc, di)} \frac{\bigg( \frac{FRisk\_F\_DI(CF[r], di) - FRisk\_F\_DI(CF[r-1], di)}{LFR\_NC\_DI(nc, di)} \bigg)}{MAXr\_NC\_DI(nc, di) - r + 1}, \scalebox{0.9}{\text{where $FRisk\_F\_DI(CF[0],di) = 0$}}\\ \end{dmath} \begin{dmath} \label{NRrank_FNC_DI} NRrank\_FNC\_DI(f, nc, di) = \text{Position of Facility $f$ in $CFordered\_NC\_DI(nc, di)$} \end{dmath} \begin{dmath} \label{CFordered_NC_DI} CFordered\_NC\_DI(nc, di) = CF\_NC\_DI(nc, di) \ \text{ordered by ascending $FRisk\_F\_DI(f, di)$ and then alphabetically} \end{dmath} The expression $CF[r]$ returns the $r$-th element of the set $CFordered\_NC\_DI(nc, di)$ and the following equation shows the interaction between $CFordered\_NC\_DI(nc, di)$, $NRrank\_FNC\_DI(f, nc, di)$ and $CF[r]$: \begin{dmath} \label{CF[r]} CF[NRrank\_FNC\_DI(f, nc, di)] = f \end{dmath} \begin{dmath} \label{MAXr_NC_DI} MAXr\_NC\_DI(nc, di) = \abs{CF\_NC\_DI(nc, di)} \end{dmath} \begin{dmath} \label{LFR_NC_DI} LFR\_NC\_DI(nc, di) = FRisk\_F\_DI(CF[MAXr\_NC\_DI(nc, di)], di) \end{dmath} \begin{dmath} \label{CF_NC_DI} \text{$CF\_NC\_DI(nc, di) = \{ f \in F\_NC\_DI(nc, di) \cap (AF\_DI(di) \cup AFadditional\_DI(di)) \} $} \end{dmath} \begin{longtable}{|p{3.6cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{2.2cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead NRS\_FNC\_DI(f, nc, di) & & FNC & DI & App 2A 4.5(c) & Network runway share for Facility f in relation to Network Contingency nc in Dispatch Interval di & (\ref{NRS_FNC_DI}) \\ \hline NRrank\_FNC\_DI(f, nc, di) & & FNC & DI & App 2A 4.5(c)ii & The element number of Facility f in the set of causer facilities associated with Network Contingency nc, where 1 is the causer facility with the lowest Facility Risk in Dispatch Interval di & (\ref{NRrank_FNC_DI}) \\ \hline FRisk\_F\_DI(f, di) & MW & F & DI & App 2A 2.2 & The runway facility risk for Facility f in Dispatch Interval di & (\ref{FRisk_F_DI}) \\ \hline LFR\_NC\_DI(nc, di) & MW & NC & DI & App 2A 4.5(c) & Largest Facility Risk in relation to Network Contingency nc in Dispatch Interval di & (\ref{LFR_NC_DI}) \\ \hline MAXr\_NC\_DI(nc, di) & & NC & DI & App 2A 4.5(c)iii & Number of causer facilities associated with Network Contingency nc in Dispatch Interval di & (\ref{MAXr_NC_DI}) \\ \hline CFordered\_NC\_DI(nc, di) & \{\} & NC & DI & App 2A 4.5(b) & Ordered set of causer facilities associated with Network Contingency nc in Dispatch Interval di (ordered by ascending Facility Risk) & (\ref{CFordered_NC_DI}) \\ \hline CF[r] & & NC & DI & App 2A 4.5(b) & The r-th element of the set $CFordered\_NC\_DI$ in Dispatch Interval di & (\ref{CF[r]}) \\ \hline CF\_NC\_DI(nc, di) & \{\} & NC & DI & App 2A 4.5(a) & Set of causer facilities that are applicable facilities or additional applicable facilities associated with Network Contingency nc in Dispatch Interval di & (\ref{CF_NC_DI}) \\ \hline F\_NC\_DI(nc, di) & \{\} & NC & DI & App 2A 4.5(a) & Set of Registered Facilities included in the Network Risk associated with Network Contingency nc in Dispatch Interval di & I \\ \hline\end{longtable} \paragraph{RTM Suspension Share} When the Real-Time Market is suspended, the Central Dispatch Process is not available to determine the Facility Risk and Network Risks which input to the runway share determined in Appendix 2A. Instead, the contribution share for Contingency Reserve Raise is calculated using the Metered Schedules for Facilities with injection greater than 10MW in the Dispatch Interval.\\ \begin{dmath} \label{RTMSuspShare_P_DI} RTMSuspShare\_P\_DI(p, di) = \frac{RTMSuspCQ\_P\_DI(p, di)}{RTMSuspCQ\_G\_DI(di)} \end{dmath} \begin{dmath} \label{RTMSuspCQ_G_DI} RTMSuspCQ\_G\_DI(di) = \displaystyle \sum_{p \in MP(di)} RTMSuspCQ\_P\_DI(p, di) \end{dmath} \begin{dmath} \label{RTMSuspCQ_P_DI} RTMSuspCQ\_P\_DI(p, di) = \displaystyle \sum_{f \in App2AF\_DI(p, di)} RTMSuspCQ\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{RTMSuspCQ_F_DI} RTMSuspCQ\_F\_DI(f, di) = \begin{dcases} max(0, MS\_F\_I(f, di)) & \text{for $f \in App2AIML\_DI(di) \cup App2AFa(di) \cup App2AFb\_DI(di)$} \\ & \text{and $SCADAEOI\_F\_DI(f, di) > 10$} \\ max(0, SCADAIML\_F\_DI(f, di) & \text{for $f \in App2AFc\_DI(di)$} \\ \times TLF\_F\_D(f, di) \times DLF\_F\_D(f, di)) & \text{$and \frac{SCADAIML\_F\_DI(f, di)}{5/60h} > 10$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RTMSuspShare\_P\_DI(p, di) & & P & DI & 9.10.30A & Real-Time Market suspension share for participant p in Dispatch Interval di & (\ref{RTMSuspShare_P_DI}) \\ \hline RTMSuspCQ\_G\_DI(di) & & G & DI & 9.10.30D & Sum of all Real-Time Market suspension contributing quantities in Dispatch Interval di & (\ref{RTMSuspCQ_G_DI}) \\ \hline RTMSuspCQ\_P\_DI(p, di) & & P & DI & 9.10.30B & Real-Time Market suspension contributing quantity for participant p in Dispatch Interval di & (\ref{RTMSuspCQ_P_DI}) \\ \hline RTMSuspCQ\_F\_DI(di) & & G & DI & 9.10.30C & Real-Time Market suspension contributing quantity for Facility f in Dispatch Interval di & (\ref{RTMSuspCQ_G_DI}) \\ \hline App2AIML\_DI(di) & \{\} & G & DI & App 2A 2.1A & Set of facilities (identified in Appendix 2A 2.1A) to be included in the runway share calculation in Dispatch Interval di & (\ref{App2AIML_DI}) \\ \hline App2AFa(d) & \{\} & G & D & App 2A 2.1(a) & Set of facilities (identified in Appendix 2A 2.1(a)) to be included in the runway share calculation in Trading Day d & (\ref{App2AFa}) \\ \hline App2AFb\_DI(di) & \{\} & G & DI & App 2A 2.1(b) & Set of facilities (identified in Appendix 2A 2.1(b)) to be included in the runway share calculation in Dispatch Interval di & (\ref{App2AFb_DI}) \\ \hline App2AFc\_DI(di) & \{\} & G & DI & App 2A 2.1(c) & Set of facilities (identified in Appendix 2A 2.1(c)) to be included in the runway share calculation in Dispatch Interval di & I \\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline DLF\_F\_D(f, d) & & F & D & Ch 11 & Distribution Loss Factor for Facility f for Trading Day d & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 9.5.3, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline SCADAEOI\_F\_DI(f, di) & MW & F & DI & & EOI Quantity of Facility f in Dispatch Interval di & I \\ \hline SCADAIMLEOI\_F\_DI(f, di) & MW & F & DI & & EOI Quantity of the Energy Producing System supplying Intermittent Load f in Dispatch Interval di & I \\ \hline TLF\_F\_D(f, d) & & F & D & Ch 11 & Transmission Loss Factor for Facility f for Trading Day d & I\\ \hline \end{longtable} \subsubsection{Contingency Lower Payments} \begin{dmath} \label{CLpayment_P_D} CLpayment\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CLpayment\_P\_I(p, i) \end{dmath} \begin{dmath} \label{CLpayment_P_I} CLpayment\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} CLpayment\_F\_I(f, i) \end{dmath} \begin{dmath} \label{CLpayment_F_I} CLpayment\_F\_I(f, i) = \displaystyle \sum_{di \in DI(i)} CLpayment\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{CLpayment_F_DI} CLpayment\_F\_DI(f, di) = CLenablement\_F\_DI(f, di) + CLavailability\_F\_DI(f, di) - CLrefund\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{CLenablement_F_DI} CLenablement\_F\_DI(f, di) = \frac{5}{60}h \times FCLprice\_G\_DI(di) \times CLquantity\_F\_DI(f, di) \times FPFCL\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{CLquantity_F_DI} CLquantity\_F\_DI(f, di) = \begin{dcases} ESSEQCL\_F\_DI(f, di) & \text{for $CLestFlag\_F\_DI(f, di) = 0$}\\ ESSEQCLest\_F\_DI(f, di) & \text{for $CLestFlag\_F\_DI(f, di) = 1$} \end{dcases} \end{dmath} \begin{dmath} \label{CLavailability_F_DI} CLavailability\_F\_DI(f, di) = \displaystyle \sum_{sa \in ACL(f, di)} AP\_SA\_DI(sa, di) \end{dmath} \begin{dmath} \label{CLrefund_F_DI} CLrefund\_F\_DI(f, di) = \displaystyle \sum_{sa \in ACL(f, di)} Refund\_SA\_DI(sa, di) \end{dmath} \begin{longtable}{|p{3.9cm}|p{1.3cm}|p{0.5cm}|p{0.5cm}|p{1.6cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead CLpayment\_P\_D(p, d) & \$ & P & D & 9.10.8 & Contingency Reserve Lower amount payable to participant p for Trading Day d & (\ref{CLpayment_P_D})\\ \hline CLpayment\_P\_I(p, i) & \$ & P & I & 9.10.8 & Contingency Reserve Lower amount payable to participant p in Trading Interval i & (\ref{CLpayment_P_I})\\ \hline CLpayment\_F\_I(f, i) & \$ & F & I & 9.10.9 & Contingency Reserve Lower amount payable to Facility f in Trading Interval i & (\ref{CLpayment_F_I})\\ \hline CLpayment\_F\_DI(f, di) & \$ & F & DI & 9.10.10 & Contingency Reserve Lower amount payable to Facility f in Dispatch Interval di & (\ref{CLpayment_F_DI})\\ \hline CLenablement\_F\_DI(f, di) & \$ & F & DI & 9.10.10 & Contingency Reserve Lower amount payable for enablement to Facility f in Dispatch Interval di & (\ref{CLenablement_F_DI})\\ \hline CLavailability\_F\_DI(f, di) & \$ & F & DI & App 2C 2.8(a)iv & Contingency Reserve Lower amount payable for availability to Facility f in Dispatch Interval di & (\ref{CLavailability_F_DI})\\ \hline CLrefund\_F\_DI(f, di) & \$ & F & DI & App 2C 2.8(b)iv & Facility SESSM Refund for Contingency Reserve Lower for Facility f in Dispatch Interval di & (\ref{CLrefund_F_DI})\\ \hline AP\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.2(c) & SESSM Availability Payment under SESSM Award sa in Dispatch Interval di & (\ref{AP_SA_DI})\\ \hline Refund\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.6 & SESSM refund under SESSM Award sa in Dispatch Interval di & (\ref{Refund_SA_DI})\\ \hline FCLprice\_G\_DI(di) & \$/MW/h & G & DI & Ch 11 & Final Contingency Reserve Lower Market Clearing Price in Dispatch Interval di & I\\ \hline CLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.10(c) & Contingency Reserve Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{CLquantity_F_DI})\\ \hline CLestFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.10(c)ii & Flag that is 1 when AEMO's reasonable estimate of Facility f's ability to provide Contingency Reserve Lower in Dispatch Interval di is used, and 0 otherwise & I\\ \hline ESSEQCL\_F\_DI(f, di) & MW & F & DI & 9.10.10(c)i & Essential System Service Enablement Quantity for Contingency Reserve Lower for Facility f in Dispatch Interval di & I\\ \hline ESSEQCLest\_F\_DI(f, di) & MW & F & DI & 9.10.10(c)ii & AEMO's estimate of capability of Facility f to provide Contingency Reserve Lower in Dispatch Interval di & I\\ \hline FPFCL\_F\_DI(f, di) & & F & DI & 9.10.10(d) & Facility Performance Factor for Contingency Reserve Lower for Facility f in Dispatch Interval di & I\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline ACL(d) & \{\} & G & D & Ch 11 & Set of SESSM Awards for Contingency Reserve Lower on Trading Day d & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline \end{longtable} \subsubsection{Contingency Lower Charges (Recoverable)} \begin{dmath} \label{CLcharge_P_D} CLcharge\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CLcharge\_P\_I(p, i) \end{dmath} \begin{dmath} \label{CLcharge_P_I} CLcharge\_P\_I(p, i) = CS\_P\_I(p, i) \times CLpayment\_G\_I(i) \end{dmath} \begin{dmath} \label{CLpayment_G_I} CLpayment\_G\_I(i) = \displaystyle \sum_{p \in MP(i)} CLpayment\_P\_I(p, i) + \displaystyle \sum_{p \in MP(i)} FCESSUShareCL\_P\_I(p, i) \end{dmath} \begin{dmath} \label{FCESSUShareCL_P_I} FCESSUShareCL\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} FCESSUShareCL\_F\_I(f, i) \end{dmath} \begin{dmath} \label{FCESSUShareCL_F_I} FCESSUShareCL\_F\_I(f, i) = \displaystyle \sum_{d \in DI(di)} FCESSUShareCL\_F\_DI(f, di) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead CLcharge\_P\_D(p, d) & \$ & P & D & 9.10.31 & Contingency Reserve Lower amount recoverable from participant p for Trading Day d & (\ref{CLcharge_P_D})\\ \hline CLcharge\_P\_I(p, i) & \$ & P & I & 9.10.32 & Contingency Reserve Lower amount recoverable from participant p in Trading Interval i & (\ref{CLcharge_P_I})\\ \hline CLpayment\_G\_I(i) & \$ & G & I & 9.10.9 & Contingency Reserve Lower amount payable in Trading Interval i & (\ref{CLpayment_G_I})\\ \hline FCESSUShareCL\_P\_I(p, i) & \$ & P & I & & Share of FCESS Uplift Payments to be allocated to Contingency Reserve Lower for Participant p in Trading Interval i & (\ref{FCESSUShareCL_P_I})\\ \hline FCESSUShareCL\_F\_I(f, i) & \$ & F & I & & Share of FCESS Uplift Payments to be allocated to Contingency Reserve Lower for Facility f in Trading Interval i & (\ref{FCESSUShareCL_F_I})\\ \hline CLpayment\_P\_I(p, i) & \$ & P & I & 9.10.8 & Contingency Reserve Lower amount payable to participant p in Trading Interval i & (\ref{CLpayment_P_I})\\ \hline FCESSUShareCL\_F\_DI(f, di) & \$ & F & DI & 9.10.3L & Share of FCESS Uplift Payments to be allocated to Contingency Reserve Lower for Facility f in Dispatch Interval di & (\ref{FCESSUShareCL_F_DI})\\ \hline CS\_P\_I(p, i) & & P & I & 9.5.6 & Consumption share of participant p in Trading Interval i & (\ref{CS_P_I})\\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsubsection{RoCoF Control Service Payments} \begin{dmath} \label{RoCoFpayment_P_D} RoCoFpayment\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} RoCoFpayment\_P\_I(p, i) \end{dmath} \begin{dmath} \label{RoCoFpayment_P_I} RoCoFpayment\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} RoCoFpayment\_F\_I(f, i) \end{dmath} \begin{dmath} \label{RoCoFpayment_F_I} RoCoFpayment\_F\_I(f, i) = \displaystyle \sum_{di \in DI(i)} RoCoFpayment\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{RoCoFpayment_F_DI} RoCoFpayment\_F\_DI(f, di) = RoCoFenablement\_F\_DI(f, di) + RoCoFavailability\_F\_DI(f, di) - RoCoFrefund\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{RoCoFenablement_F_DI} RoCoFenablement\_F\_DI(f, di) = \frac{5}{60}h \times FRoCoFprice\_G\_DI(di) \times RoCoFquantity\_F\_DI(f, di) \times FPFRoCoF\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{RoCoFquantity_F_DI} RoCoFquantity\_F\_DI(f, di) = \begin{dcases} ESSEQRoCoF\_F\_DI(f, di) & \text{for $RoCoFestFlag\_F\_DI(f, di) = 0$}\\ ESSEQRoCoFest\_F\_DI(f, di) & \text{for $RoCoFestFlag\_F\_DI(f, di) = 1$} \end{dcases} \end{dmath} \begin{dmath} \label{RoCoFavailability_F_DI} RoCoFavailability\_F\_DI(f, di) = \displaystyle \sum_{sa \in ARCS(f, di)} AP\_SA\_DI(sa, di) \end{dmath} \begin{dmath} \label{RoCoFrefund_F_DI} RoCoFrefund\_F\_DI(f, di) = \displaystyle \sum_{sa \in ARCS(f, di)} Refund\_SA\_DI(sa, di) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RoCoFpayment\_P\_D(p, d) & \$ & P & D & 9.10.12 & RoCoF Control Service amount payable to participant p for Trading Day d & (\ref{RoCoFpayment_P_D})\\ \hline RoCoFpayment\_P\_I(p, i) & \$ & P & I & 9.10.12 & RoCoF Control Service amount payable to participant p in Trading Interval i & (\ref{RoCoFpayment_P_I})\\ \hline RoCoFpayment\_F\_I(f, i) & \$ & F & I & 9.10.13 & RoCoF Control Service amount payable to Facility f in Trading Interval i & (\ref{RoCoFpayment_F_I})\\ \hline RoCoFpayment\_F\_DI(f, di) & \$ & F & DI & 9.10.14 & RoCoF Control Service amount payable to Facility f in Dispatch Interval di & (\ref{RoCoFpayment_F_DI})\\ \hline RoCoFenablement\_F\_DI(f, di) & \$ & F & DI & 9.10.14 & RoCoF Control Service amount payable for enablement to Facility f in Dispatch Interval di & (\ref{RoCoFenablement_F_DI})\\ \hline RoCoFavailability\_F\_DI(f, di) & \$ & F & DI & App 2C 2.8(a)v & RoCoF Control Service amount payable for availability to Facility f in Dispatch Interval di & (\ref{RoCoFavailability_F_DI})\\ \hline RoCoFrefund\_F\_DI(f, di) & \$ & F & DI & App 2C 2.8(b)v & Facility SESSM Refund for RoCoF Control Service for Facility f in Dispatch Interval di & (\ref{RoCoFrefund_F_DI})\\ \hline AP\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.2(c) & SESSM Availability Payment under SESSM Award sa in Dispatch Interval di & (\ref{AP_SA_DI})\\ \hline Refund\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.6 & SESSM refund under SESSM Award sa in Dispatch Interval di & (\ref{Refund_SA_DI})\\ \hline FRoCoFprice\_G\_DI(di) & \$/MW & G & DI & Ch 11 & Final RoCoF Control Service Market Clearing Price in Dispatch Interval di & I\\ \hline RoCoFquantity\_F\_DI(f, di) & MW & F & DI & 9.10.14(c) & RoCoF Control Service enablement quantity for Facility f in Dispatch Interval di & (\ref{RoCoFquantity_F_DI})\\ \hline RoCoFestFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.14(c)ii & Flag that is 1 when AEMO's reasonable estimate of Facility f's ability to provide RoCoF in Dispatch Interval di is used, and 0 otherwise & I\\ \hline ESSEQRoCoF\_F\_DI(f, di) & MW & F & DI & 9.10.14(c)i & Essential System Service Enablement Quantity for RoCoF Control Service for Facility f in Dispatch Interval di & I\\ \hline ESSEQRoCoFest\_F\_DI(f, di) & MW & F & DI & 9.10.14(c)ii & AEMO's estimate of capability of Facility f to provide RoCoF Control Service in Dispatch Interval di & I\\ \hline FPFRoCoF\_F\_DI(f, di) & & F & DI & 9.10.14(d) & Facility Performance Factor for RoCoF Control Service for Facility f in Dispatch Interval di & I\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline ARCS(d) & \{\} & G & D & Ch 11 & Set of SESSM Awards for RoCoF Control Service on Trading Day d & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline \end{longtable} \subsubsection{RoCoF Control Service Charges (Recoverable)} \begin{dmath} \label{RoCoFcharge_P_D} RoCoFcharge\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} RoCoFcharge\_P\_I(p, i) \end{dmath} \begin{dmath} \label{RoCoFcharge_P_I} RoCoFcharge\_P\_I(p, i) = RoCoFmincharge\_P\_I(p, i) + RoCoFaddcharge\_P\_I(p, i) \end{dmath} \begin{dmath} \label{RoCoFaddcharge_P_I} RoCoFaddcharge\_P\_I(p, i) = \displaystyle \sum_{di \in DI(i)} RoCoFaddcharge\_P\_DI(p, di) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RoCoFcharge\_P\_D(p, d) & \$ & P & D & 9.10.33 & RoCoF Control Service amount recoverable from participant p for Trading Day d & (\ref{RoCoFcharge_P_D})\\ \hline RoCoFcharge\_P\_I(p, i) & \$ & P & I & 9.10.34 & RoCoF Control Service amount recoverable from participant p in Trading Interval i & (\ref{RoCoFcharge_P_I})\\ \hline RoCoFmincharge\_P\_I(p, i) & \$ & P & I & 9.10.42 & RoCoF Control Service amount recoverable related to the Minimum RoCoF Control Requirement from participant p in Trading Interval i & (\ref{RoCoFmincharge_P_I})\\ \hline RoCoFaddcharge\_P\_I(p, i) & \$ & P & I & 9.10.34 & RoCoF Control Service amount recoverable related to the Additional RoCoF Control Requirement from participant p in Trading Interval i & (\ref{RoCoFaddcharge_P_I})\\ \hline RoCoFaddcharge\_P\_DI(p, di) & \$ & P & DI & 9.10.43 & RoCoF Control Service amount recoverable related to the Additional RoCoF Control Requirement from participant p in Dispatch Interval di & (\ref{RoCoFaddcharge_P_DI})\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline \end{longtable} \paragraph{Minimum RoCoF Control Service Charges} \begin{dmath} \label{RoCoFmincharge_P_I} RoCoFmincharge\_P\_I(p, i) = RoCoFsharemin\_P\_I(p, i) \times RoCoFminpayment\_G\_I(i) \end{dmath} \begin{dmath} \label{RoCoFminpayment_G_I} RoCoFminpayment\_G\_I(i) = \displaystyle \sum_{di \in DI(i)} RoCoFminpayment\_G\_DI(di) \end{dmath} \begin{dmath} \label{RoCoFminpayment_G_DI} RoCoFminpayment\_G\_DI(di) = \begin{dcases} \frac{RoCoFreqmin\_G\_DI(di)}{RoCoFreq\_G\_DI(di)} \times RoCoFpayment\_G\_DI(di) & \text{for $RoCoFreq\_G\_DI(di) \neq 0$}\\ 0 & \text{for $RoCoFreq\_G\_DI(di) = 0$} \end{dcases} \end{dmath} \begin{dmath} \label{RoCoFpayment_G_DI} RoCoFpayment\_G\_DI(di) = \sum_{f \in REG\_F(di)} RoCoFpayment\_F\_DI(f, di) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RoCoFmincharge\_P\_I(p, i) & \$ & P & I & 9.10.42 & RoCoF Control Service amount recoverable related to the Minimum RoCoF Control Requirement from participant p in Trading Interval i & (\ref{RoCoFmincharge_P_I})\\ \hline RoCoFminpayment\_G\_I(i) & \$ & G & I & 9.10.18 & RoCoF Control Service amount payable related to the Minimum RoCoF Control Requirement in Trading Interval i & (\ref{RoCoFminpayment_G_I})\\ \hline RoCoFminpayment\_G\_DI(di) & \$ & G & DI & 9.10.16 & RoCoF Control Service amount payable related to the Minimum RoCoF Control Requirement in Dispatch Interval di & (\ref{RoCoFminpayment_G_DI})\\ \hline RoCoFpayment\_G\_DI(di) & \$ & G & DI & 9.10.15 & RoCoF Control Service amount payable in Dispatch Interval di & (\ref{RoCoFpayment_G_DI})\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline RoCoFpayment\_F\_DI(f, di) & \$ & F & DI & 9.10.14 & RoCoF Control Service amount payable to Facility f in Dispatch Interval di & (\ref{RoCoFpayment_F_DI})\\ \hline RoCoFreq\_G\_DI(di) & MWs & G & DI & 9.10.16(c) & RoCoF Control Requirement in Dispatch Interval di & I\\ \hline RoCoFreqmin\_G\_DI(di) & MWs & G & DI & 9.10.16(b) & Minimum RoCoF Control Requirement in Dispatch Interval di & I\\ \hline RoCoFsharemin\_P\_I(p, i) & & P & I & App 2B 2.8 & Share of costs related to procuring Minimum RoCoF Control Requirement for participant p in Trading Interval i & (\ref{RoCoFsharemin_P_I})\\ \hline \end{longtable} \paragraph{Share of Minimum RoCoF Charges} \begin{dmath} \label{RoCoFsharemin_P_I} RoCoFsharemin\_P\_I(p, i) = NetworkShare\_P\_I(p, i) + InjectionShare\_P\_I(p, i) + OfftakeShare\_P\_I(p, i) \end{dmath} \begin{dmath} \label{InjectionShare_P_I} InjectionShare\_P\_I(p, i) = \sum_{f \in InjectionC\_I(p, i)} InjectionShare\_F\_I(f, i) \end{dmath} \begin{dmath} \label{OfftakeShare_P_I} OfftakeShare\_P\_I(p, i) = \sum_{f \in OfftakeC\_I(p, i)} OfftakeShare\_F\_I(f, i) \end{dmath} \textbf{Network Share} \begin{dmath} \label{NetworkShare_P_I} NetworkShare\_P\_I(p, i) = \begin{cases} \frac{NetworkCF\_G\_D(i)}{Groups\_G\_I(i)} & \text{for $p \in WPNTWK(i)$} \\ 0 & \text{otherwise} \end{cases} \end{dmath} \begin{dmath} \label{Groups_G_I} Groups\_G\_I(i) = NetworkCF\_G\_D(i) + InjectionCF\_G\_I(i) + OfftakeCF\_G\_I(i) \end{dmath} \begin{dmath} \label{NetworkCF_G_D} NetworkCF\_G\_D(i) = \begin{cases} 0 & \text{for $\abs{NetworkC(i)} = 0$}\\ 1 & \text{otherwise} \end{cases} \end{dmath} \begin{equation} \label{NetworkC} NetworkC(d) = \{f \in NTWK(p, d) : p \in WPNTWK(d) \text{ and } RoCoFRTC\_F\_D(f, d) \leq RoCoFRTCRL\_G\_D(d) \} \end{equation} \textbf{Injection Share} \begin{dmath} \label{InjectionShare_F_I} InjectionShare\_F\_I(f, i) = \frac{InjectionCF\_G\_I(i)}{Groups\_G\_I(i)} \times \frac{InjectionCQ\_F\_I(f, i)}{InjectionCQ\_G\_I(i)} \end{dmath} \begin{dmath} \label{InjectionCQ_G_I} InjectionCQ\_G\_I(i) = \displaystyle \sum_{f \in InjectionC\_I(i)} InjectionCQ\_F\_I(f, i) \end{dmath} \begin{dmath} \label{InjectionCQ_F_I} InjectionCQ\_F\_I(f, i) = \abs{MS\_F\_I(f, i)} \end{dmath} \begin{dmath} \label{InjectionCF_G_I} InjectionCF\_G\_I(i) = \begin{cases} 0 & \text{for $\abs{InjectionC\_I(i)} = 0$}\\ 1 & \text{otherwise} \end{cases} \end{dmath} \begin{equation} \label{InjectionC_I} InjectionC\_I(i) = \{f \in InjectionC(i) : MS\_F\_I(f, i) \neq 0\} \end{equation} \begin{equation} \label{InjectionC} InjectionC(d) = \{f \in (SF(d) \cup SSF(d) \cup NSF(d)) \cap \overline{PureLoad(d)} : RoCoFRTC\_F\_D(f, d) \leq RoCoFRTCRL\_G\_D(d) \} \end{equation} \textbf{Offtake Share} \begin{dmath} \label{OfftakeShare_F_I} OfftakeShare\_F\_I(f, i) = \frac{OfftakeCF\_G\_I(i)}{Groups\_G\_I(i)} \times \frac{OfftakeCQ\_F\_I(f, i)}{OfftakeCQ\_G\_I(i)} \end{dmath} \begin{dmath} \label{OfftakeCQ_G_I} OfftakeCQ\_G\_I(i) = \displaystyle \sum_{f \in OfftakeC\_I(i)} OfftakeCQ\_F\_I(f, i) \end{dmath} \begin{dmath} \label{OfftakeCQ_F_I} OfftakeCQ\_F\_I(f, i) = \abs{MS\_F\_I(f, i)} \end{dmath} \begin{dmath} \label{OfftakeCF_G_I} OfftakeCF\_G\_I(i) = \begin{cases} 0 & \text{for $\abs{OfftakeC\_I(i)} = 0$}\\ 1 & \text{otherwise} \end{cases} \end{dmath} \begin{equation} \label{OfftakeC_I} OfftakeC\_I(i) = \{f \in OfftakeC(i) : MS\_F\_I(f, i) \neq 0\} \end{equation} \begin{equation} \label{OfftakeC} OfftakeC(d) = \{f \in NDL(d) \cup PureLoad(d) : RoCoFRTC\_F\_D(f, d) \leq RoCoFRTCRL\_G\_D(d) \} \end{equation} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RoCoFsharemin\_P\_I(p, i) & & P & I & App 2B 2.8 & Share of costs related to procuring Minimum RoCoF Control Requirement for participant p in Trading Interval i & (\ref{RoCoFsharemin_P_I})\\ \hline NetworkShare\_P\_I(p, i) & & P & I & App 2B 2.5 & Share of Minimum RoCoF Control Service costs associated with being a network causer for participant p in Trading Interval i & (\ref{NetworkShare_P_I})\\ \hline InjectionShare\_P\_I(p, i) & & P & I & & Share of Minimum RoCoF Control Service costs associated with being an injection causer for participant p in Trading Interval i & (\ref{InjectionShare_P_I})\\ \hline OfftakeShare\_P\_I(p, i) & & P & I & & Share of Minimum RoCoF Control Service costs associated with being an offtake causer for participant p in Trading Interval i & (\ref{OfftakeShare_P_I})\\ \hline Groups\_G\_I(i) & & G & I & App 2B 2.4 & Number of non-empty causer groups related to Minimum RoCoF Control Services in Trading Interval i & (\ref{Groups_G_I})\\ \hline NetworkCF\_G\_D(d) & Flag & G & I & App 2B 2.3(a) & Flag that is 1 when there are network causers in Trading Day d, and 0 otherwise & (\ref{NetworkCF_G_D})\\ \hline InjectionCF\_G\_I(i) & Flag & G & I & App 2B 2.3(b) & Flag that is 1 when there are injection causers in Trading Interval i, and 0 otherwise & (\ref{InjectionCF_G_I})\\ \hline OfftakeCF\_G\_I(i) & Flag & G & I & App 2B 2.3(c) & Flag that is 1 when there are offtake causers in Trading Interval i, and 0 otherwise & (\ref{OfftakeCF_G_I})\\ \hline RoCoFRTC\_F\_D(f, d) & Hz /500ms & F & D & Ch 11 & RoCoF Ride-Through Capability for Facility f for Trading Day d & I\\ \hline RoCoFRTCRL\_G\_D(d) & Hz /500ms & G & D & Ch 11 & RoCoF Ride-Through Cost Recovery Limit for Trading Day d & I\\ \hline InjectionShare\_F\_I(f, i) & & F & I & & Share of Minimum RoCoF Control Service costs associated with being an injection causer for Facility f in Trading Interval i & (\ref{InjectionShare_F_I})\\ \hline OfftakeShare\_F\_I(f, i) & & F & I & & Share of Minimum RoCoF Control Service costs associated with being an offtake causer for Facility f in Trading Interval i & (\ref{OfftakeShare_F_I})\\ \hline InjectionCQ\_F\_I(f, i) & MWh & F & I & & Injection causer contribution quantity for Facility f in Trading Interval i & (\ref{InjectionCQ_F_I})\\ \hline OfftakeCQ\_F\_I(f, i) & MWh & F & I & & Offtake causer contribution quantity for Facility f in Trading Interval i & (\ref{OfftakeCQ_F_I})\\ \hline InjectionCQ\_G\_I(i) & MWh & G & I & & Injection causer contribution quantity in Trading Interval i & (\ref{InjectionCQ_G_I})\\ \hline OfftakeCQ\_G\_I(i) & MWh & G & I & & Offtake causer contribution quantity in Trading Interval i & (\ref{OfftakeCQ_G_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 9.5.3, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline NetworkC(d) & \{\} & G & D & App 2B 2.2(a) & Set of facilities that are network causers in Trading Day d & (\ref{NetworkC})\\ \hline InjectionC(d) & \{\} & G & D & & Set of facilities that are potentially injection causers in Trading Day d & (\ref{InjectionC})\\ \hline InjectionC\_I(i) & \{\} & G & I & App 2B 2.2(b) & Set of facilities that are injection causers in Trading Interval i & (\ref{InjectionC_I})\\ \hline OfftakeC(d) & \{\} & G & D & & Set of facilities that are potentially offtake causers in Trading Day d & (\ref{OfftakeC})\\ \hline OfftakeC\_I(i) & \{\} & G & I & App 2B 2.2(c) & Set of facilities that are offtake causers in Trading Interval i & (\ref{OfftakeC_I})\\ \hline NDL(d) & \{\} & G & D & Ch 11 & Set of Non-Dispatchable Loads in Trading Day d & (\ref{NDL})\\ \hline WPNTWK(d) & \{\} & G & D & & Set containing Western Power in Trading Day d & (\ref{WPNTWK})\\ \hline PureLoad(d) & \{\} & G & D & App 2B 2.2(c)i & Set of Scheduled Facilities, Semi-Scheduled Facilities or Non-Scheduled Facilities that comprise only Loads in Trading Day d & I\\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline NSF(d) & \{\} & G & D & Ch 11 & Set of Non-Scheduled Facilities in Trading Day d & (\ref{NSF}) \\ \hline \end{longtable} \paragraph{Additional RoCoF Control Service Charges} \begin{dmath} \label{RoCoFaddcharge_P_DI} RoCoFaddcharge\_P\_DI(p, di) = \begin{dcases} RTMSuspShare\_P\_DI(p, di) \times RoCoFaddpayment\_G\_DI(di) & \text{if $RTMSuspFlag\_G\_DI(di) = 1$} \\ TRS\_P\_DI(p, di) \times RoCoFaddpayment\_G\_DI(di) & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{RoCoFaddpayment_G_DI} RoCoFaddpayment\_G\_DI(di) = RoCoFpayment\_G\_DI(di) - RoCoFminpayment\_G\_DI(di) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RoCoFaddcharge\_P\_DI(p, di) & \$ & P & DI & 9.10.43 & RoCoF Control Service amount recoverable related to the Additional RoCoF Control Requirement from participant p in Dispatch Interval di & (\ref{RoCoFaddcharge_P_DI})\\ \hline RoCoFaddpayment\_G\_DI(di) & \$ & G & DI & 9.10.19 & RoCoF Control Service amount payable related to the Additional RoCoF Control Requirement in Dispatch Interval di & (\ref{RoCoFaddpayment_G_DI})\\ \hline RoCoFminpayment\_G\_DI(di) & \$ & G & DI & 9.10.16 & RoCoF Control Service amount payable related to the Minimum RoCoF Control Requirement in Dispatch Interval di & (\ref{RoCoFminpayment_G_DI})\\ \hline RoCoFpayment\_G\_DI(di) & \$ & G & DI & 9.10.15 & RoCoF Control Service amount payable in Dispatch Interval di & (\ref{RoCoFpayment_G_DI})\\ \hline TRS\_P\_DI(p, di) & & P & DI & App 2A 5.3 & Total runway share for participant p in Dispatch Interval di & (\ref{TRS_P_DI})\\ \hline \end{longtable} \subsubsection{Regulation Raise Payments} \begin{dmath} \label{RRpayment_P_D} RRpayment\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} RRpayment\_P\_I(p, i) \end{dmath} \begin{dmath} \label{RRpayment_P_I} RRpayment\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} RRpayment\_F\_I(f, i) \end{dmath} \begin{dmath} \label{RRpayment_F_I} RRpayment\_F\_I(f, i) = \displaystyle \sum_{di \in DI(i)} RRpayment\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{RRpayment_F_DI} RRpayment\_F\_DI(f, di) = RRenablement\_F\_DI(f, di) + RRavailability\_F\_DI(f, di) - RRrefund\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{RRenablement_F_DI} RRenablement\_F\_DI(f, di) = \frac{5}{60}h \times FRRprice\_G\_DI(di) \times RRquantity\_F\_DI(f, di) \times FPFRR\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{RRquantity_F_DI} RRquantity\_F\_DI(f, di) = \begin{dcases} ESSEQRR\_F\_DI(f, di) & \text{for $RRestFlag\_F\_DI(f, di) = 0$}\\ ESSEQRRest\_F\_DI(f, di) & \text{for $RRestFlag\_F\_DI(f, di) = 1$} \end{dcases} \end{dmath} \begin{dmath} \label{RRavailability_F_DI} RRavailability\_F\_DI(f, di) = \displaystyle \sum_{sa \in ARR(f, di)} AP\_SA\_DI(sa, di) \end{dmath} \begin{dmath} \label{RRrefund_F_DI} RRrefund\_F\_DI(f, di) = \displaystyle \sum_{sa \in ARR(f, di)} Refund\_SA\_DI(sa, di) \end{dmath} \begin{longtable}{|p{3.9cm}|p{1.3cm}|p{0.5cm}|p{0.5cm}|p{1.6cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RRpayment\_P\_D(p, d) & \$ & P & D & 9.10.20 & Regulation Raise amount payable to participant p for Trading Day d & (\ref{RRpayment_P_D})\\ \hline RRpayment\_P\_I(p, i) & \$ & P & I & 9.10.20 & Regulation Raise amount payable to participant p in Trading Interval i & (\ref{RRpayment_P_I})\\ \hline RRpayment\_F\_I(f, i) & \$ & F & I & 9.10.21 & Regulation Raise amount payable to Facility f in Trading Interval i & (\ref{RRpayment_F_I})\\ \hline RRpayment\_F\_DI(f, di) & \$ & F & DI & 9.10.22 & Regulation Raise amount payable to Facility f in Dispatch Interval di & (\ref{RRpayment_F_DI})\\ \hline RRenablement\_F\_DI(f, di) & \$ & F & DI & 9.10.22 & Regulation Raise amount payable for enablement to Facility f in Dispatch Interval di & (\ref{RRenablement_F_DI})\\ \hline RRavailability\_F\_DI(f, di) & \$ & F & DI & App 2C 2.8(a)i & Regulation Raise amount payable for availability to Facility f in Dispatch Interval di & (\ref{RRavailability_F_DI})\\ \hline RRrefund\_F\_DI(f, di) & \$ & F & DI & App 2C 2.8(b)i & Facility SESSM Refund for Regulation Raise for Facility f in Dispatch Interval di & (\ref{RRrefund_F_DI})\\ \hline AP\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.2(c) & SESSM Availability Payment under SESSM Award sa in Dispatch Interval di & (\ref{AP_SA_DI})\\ \hline Refund\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.6 & SESSM refund under SESSM Award sa in Dispatch Interval di & (\ref{Refund_SA_DI})\\ \hline FRRprice\_G\_DI(di) & \$/MW/h & G & DI & Ch 11 & Final Regulation Raise Market Clearing Price in Dispatch Interval di & I\\ \hline RRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.22(c) & Regulation Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{RRquantity_F_DI})\\ \hline RRestFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.22(c)ii & Flag that is 1 when AEMO's reasonable estimate of Facility f's ability to provide Regulation Raise in Dispatch Interval di is used, and 0 otherwise & I\\ \hline ESSEQRR\_F\_DI(f, di) & MW & F & DI & 9.10.22(c)i & Essential System Service Enablement Quantity for Regulation Raise for Facility f in Dispatch Interval di & I\\ \hline ESSEQRRest\_F\_DI(f, di) & MW & F & DI & 9.10.22(c)ii & AEMO's estimate of capability of Facility f to provide Regulation Raise in Dispatch Interval di & I\\ \hline FPFRR\_F\_DI(f, di) & & F & DI & 9.10.22(d) & Facility Performance Factor for Regulation Raise for Facility f in Dispatch Interval di & I\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline ARR(d) & \{\} & G & D & Ch 11 & Set of SESSM Awards for Regulation Raise on Trading Day d & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline \end{longtable} \subsubsection{Regulation Raise Charges (Recoverable)} \begin{dmath} \label{RRcharge_P_D} RRcharge\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} RRcharge\_P\_I(p, i) \end{dmath} \begin{dmath} \label{RRcharge_P_I} RRcharge\_P\_I(p, i) = RS\_P\_I(p, i) \times RRpayment\_G\_I(i) \end{dmath} \begin{dmath} \label{RRpayment_G_I} RRpayment\_G\_I(i) = \displaystyle \sum_{p \in MP(i)} RRpayment\_P\_I(p, i) + \displaystyle \sum_{p \in MP(i)} FCESSUShareRR\_P\_I(p, i) \end{dmath} \begin{dmath} \label{FCESSUShareRR_P_I} FCESSUShareRR\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} FCESSUShareRR\_F\_I(f, i) \end{dmath} \begin{dmath} \label{FCESSUShareRR_F_I} FCESSUShareRR\_F\_I(f, i) = \displaystyle \sum_{d \in DI(di)} FCESSUShareRR\_F\_DI(f, di) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RRcharge\_P\_D(p, d) & \$ & P & D & 9.10.35 & Regulation Raise amount recoverable from participant p for Trading Day d & (\ref{RRcharge_P_D})\\ \hline RRcharge\_P\_I(p, i) & \$ & P & I & 9.10.36 & Regulation Raise amount recoverable from participant p in Trading Interval i & (\ref{RRcharge_P_I})\\ \hline RRpayment\_G\_I(i) & \$ & G & I & 9.10.24 & Regulation Raise amount payable in Trading Interval i & (\ref{RRpayment_G_I})\\ \hline FCESSUShareRR\_P\_I(p, i) & \$ & P & I & 9.10.24 & Share of FCESS Uplift Payments to be allocated to Regulation Raise for Participant p in Trading Interval i & (\ref{FCESSUShareRR_P_I})\\ \hline FCESSUShareRR\_F\_I(f, i) & \$ & F & I & 9.10.24 & Share of FCESS Uplift Payments to be allocated to Regulation Raise for Facility f in Trading Interval i & (\ref{FCESSUShareRR_F_I})\\ \hline RRpayment\_P\_I(p, i) & \$ & P & I & 9.10.20 & Regulation Raise amount payable to participant p in Trading Interval i & (\ref{RRpayment_P_I})\\ \hline FCESSUShareRR\_F\_DI(f, di) & \$ & F & DI & 9.10.3N & Share of FCESS Uplift Payments to be allocated to Regulation Raise for Facility f in Dispatch Interval di & (\ref{FCESSUShareRR_F_DI})\\ \hline RS\_P\_I(p, i) & & P & I & 9.10.37 & Regulation share of participant p in Trading Interval i & (\ref{RS_P_I})\\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsubsection{Regulation Share} \begin{dmath} \label{RS_P_I} RS\_P\_I(p, i) = \frac{RCQ\_P\_I(p, i)}{RCQ\_G\_I(i)} \end{dmath} \begin{dmath} \label{RCQ_G_I} RCQ\_G\_I(i) = \displaystyle \sum_{p \in MP(i)} RCQ\_P\_I(p, i) \end{dmath} \begin{dmath} \label{RCQ_P_I} RCQ\_P\_I(p, i) = ABSNDL\_P\_I(p, i) + \sum_{f \in SSF(p, i) \cup NSF(p, i)} \abs{MS\_F\_I(f, i)} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RS\_P\_I(p, i) & & P & I & 9.10.37 & Regulation share of participant p in Trading Interval i & (\ref{RS_P_I})\\ \hline RCQ\_P\_I(p, i) & MWh & P & I & 9.10.38 & Regulation contributing quantity for participant p in Trading Interval i & (\ref{RCQ_P_I})\\ \hline RCQ\_G\_I(i) & MWh & G & I & 9.10.39 & Sum of all Regulation contributing quantities in Trading Interval i & (\ref{RCQ_P_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 9.5.3, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline ABSNDL\_P\_I(p, i) & MWh & P & I & 9.12.5, 9.10.38 & Sum of the absolute value of Metered Schedules for all Non-Dispatchable Loads for participant p in Trading Interval i & (\ref{ABSNDL_P_I})\\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline NSF(d) & \{\} & G & D & Ch 11 & Set of Non-Scheduled Facilities in Trading Day d & (\ref{NSF}) \\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline \end{longtable} \subsubsection{Regulation Lower Payments} \begin{dmath} \label{RLpayment_P_D} RLpayment\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} RLpayment\_P\_I(p, i) \end{dmath} \begin{dmath} \label{RLpayment_P_I} RLpayment\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} RLpayment\_F\_I(f, i) \end{dmath} \begin{dmath} \label{RLpayment_F_I} RLpayment\_F\_I(f, i) = \displaystyle \sum_{di \in DI(i)} RLpayment\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{RLpayment_F_DI} RLpayment\_F\_DI(f, di) = RLenablement\_F\_DI(f, di) + RLavailability\_F\_DI(f, di) - RLrefund\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{RLenablement_F_DI} RLenablement\_F\_DI(f, di) = \frac{5}{60}h \times FRLprice\_G\_DI(di) \times RLquantity\_F\_DI(f, di) \times FPFRL\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{RLquantity_F_DI} RLquantity\_F\_DI(f, di) = \begin{dcases} ESSEQRL\_F\_DI(f, di) & \text{for $RLestFlag\_F\_DI(f, di) = 0$}\\ ESSEQRLest\_F\_DI(f, di) & \text{for $RLestFlag\_F\_DI(f, di) = 1$} \end{dcases} \end{dmath} \begin{dmath} \label{RLavailability_F_DI} RLavailability\_F\_DI(f, di) = \displaystyle \sum_{sa \in ARL(f, di)} AP\_SA\_DI(sa, di) \end{dmath} \begin{dmath} \label{RLrefund_F_DI} RLrefund\_F\_DI(f, di) = \displaystyle \sum_{sa \in ARL(f, di)} Refund\_SA\_DI(sa, di) \end{dmath} \begin{longtable}{|p{3.9cm}|p{1.3cm}|p{0.5cm}|p{0.5cm}|p{1.6cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RLpayment\_P\_D(p, d) & \$ & P & D & 9.10.20 & Regulation Lower amount payable to participant p for Trading Day d & (\ref{RLpayment_P_D})\\ \hline RLpayment\_P\_I(p, i) & \$ & P & I & 9.10.20 & Regulation Lower amount payable to participant p in Trading Interval i & (\ref{RLpayment_P_I})\\ \hline RLpayment\_F\_I(f, i) & \$ & F & I & 9.10.21 & Regulation Lower amount payable to Facility f in Trading Interval i & (\ref{RLpayment_F_I})\\ \hline RLpayment\_F\_DI(f, di) & \$ & F & DI & 9.10.23 & Regulation Lower amount payable to Facility f in Dispatch Interval di & (\ref{RLpayment_F_DI})\\ \hline RLenablement\_F\_DI(f, di) & \$ & F & DI & 9.10.23 & Regulation Lower amount payable for enablement to Facility f in Dispatch Interval di & (\ref{RLenablement_F_DI})\\ \hline RLavailability\_F\_DI(f, di) & \$ & F & DI & App 2C 2.8(a)ii & Regulation Lower amount payable for availability to Facility f in Dispatch Interval di & (\ref{RLavailability_F_DI})\\ \hline RLrefund\_F\_DI(f, di) & \$ & F & DI & App 2C 2.8(b)ii & Facility SESSM Refund for Regulation Lower for Facility f in Dispatch Interval di & (\ref{RLrefund_F_DI})\\ \hline AP\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.2(c) & SESSM Availability Payment under SESSM Award sa in Dispatch Interval di & (\ref{AP_SA_DI})\\ \hline Refund\_SA\_DI(sa, di) & \$ & SA & DI & App 2C 2.6 & SESSM refund under SESSM Award sa in Dispatch Interval di & (\ref{Refund_SA_DI})\\ \hline FRLprice\_G\_DI(di) & \$/MW/h & G & DI & Ch 11 & Final Regulation Lower Market Clearing Price in Dispatch Interval di & I\\ \hline RLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.23(c) & Regulation Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{RLquantity_F_DI})\\ \hline RLestFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.23(c)ii & Flag that is 1 when AEMO's reasonable estimate of Facility f's ability to provide Regulation Lower in Dispatch Interval di is used, and 0 otherwise & I\\ \hline ESSEQRL\_F\_DI(f, di) & MW & F & DI & 9.10.23(c)i & Essential System Service Enablement Quantity for Regulation Lower for Facility f in Dispatch Interval di & I\\ \hline ESSEQRLest\_F\_DI(f, di) & MW & F & DI & 9.10.23(c)ii & AEMO's estimate of capability of Facility f to provide Regulation Lower in Dispatch Interval di & I\\ \hline FPFRL\_F\_DI(f, di) & & F & DI & 9.10.23(d) & Facility Performance Factor for Regulation Lower for Facility f in Dispatch Interval di & I\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline ARL(d) & \{\} & G & D & Ch 11 & Set of SESSM Awards for Regulation Lower on Trading Day d & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline \end{longtable} \subsubsection{Regulation Lower Charges (Recoverable)} \begin{dmath} \label{RLcharge_P_D} RLcharge\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} RLcharge\_P\_I(p, i) \end{dmath} \begin{dmath} \label{RLcharge_P_I} RLcharge\_P\_I(p, i) = RS\_P\_I(p, i) \times RLpayment\_G\_I(i) \end{dmath} \begin{dmath} \label{RLpayment_G_I} RLpayment\_G\_I(i) = \displaystyle \sum_{p \in MP(i)} RLpayment\_P\_I(p, i) + \displaystyle \sum_{p \in MP(i)} FCESSUShareRL\_P\_I(p, i) \end{dmath} \begin{dmath} \label{FCESSUShareRL_P_I} FCESSUShareRL\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} FCESSUShareRL\_F\_I(f, i) \end{dmath} \begin{dmath} \label{FCESSUShareRL_F_I} FCESSUShareRL\_F\_I(f, i) = \displaystyle \sum_{d \in DI(di)} FCESSUShareRL\_F\_DI(f, di) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RLcharge\_P\_D(p, d) & \$ & P & D & 9.10.35 & Regulation Lower amount recoverable from participant p for Trading Day d & (\ref{RLcharge_P_D})\\ \hline RLcharge\_P\_I(p, i) & \$ & P & I & 9.10.36 & Regulation Lower amount recoverable from participant p in Trading Interval i & (\ref{RLcharge_P_I})\\ \hline RLpayment\_G\_I(i) & \$ & G & I & 9.10.24 & Regulation Lower amount payable in Trading Interval i & (\ref{RLpayment_G_I})\\ \hline FCESSUShareRL\_P\_I(p, i) & \$ & P & I & 9.10.24 & Share of FCESS Uplift Payments to be allocated to Regulation Lower for Participant p in Trading Interval i & (\ref{FCESSUShareRL_P_I})\\ \hline FCESSUShareRL\_F\_I(f, i) & \$ & F & I & 9.10.24 & Share of FCESS Uplift Payments to be allocated to Regulation Lower for Facility f in Trading Interval i & (\ref{FCESSUShareRL_F_I})\\ \hline RLpayment\_P\_I(p, i) & \$ & P & I & 9.10.20 & Regulation Lower amount payable to participant p in Trading Interval i & (\ref{RLpayment_P_I})\\ \hline FCESSUShareRL\_F\_DI(f, di) & \$ & F & DI & 9.10.3O & Share of FCESS Uplift Payments to be allocated to Regulation Lower for Facility f in Dispatch Interval di & (\ref{FCESSUShareRL_F_DI})\\ \hline RS\_P\_I(p, i) & & P & I & 9.10.37 & Regulation share of participant p in Trading Interval i & (\ref{RS_P_I})\\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsubsection{System Restart Service Payments} \begin{dmath} \label{SRSpayment_P_D} SRSpayment\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} SRSpayment\_P\_I(p, i) \end{dmath} \begin{dmath} \label{SRSpayment_P_I} SRSpayment\_P\_I(p, i) = \displaystyle \sum_{c \in SRS(p, i)} SRSpayment\_C\_I(c, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead SRSpayment\_P\_D(p, d) & \$ & P & D & 9.10.25 & System Restart Service amount payable to participant p for Trading Day d & (\ref{SRSpayment_P_D})\\ \hline SRSpayment\_P\_I(p, i) & \$ & P & I & 9.10.26 & System Restart Service amount payable to participant p in Trading Interval i & (\ref{SRSpayment_P_I})\\ \hline SRSpayment\_C\_I(c, i) & \$ & C & I & 9.10.26(a) & System Restart Service amount payable under System Restart Service Contract c in Trading Interval i & I\\ \hline SRS(d) & \{\} & G & D & Ch 11 & Set of System Restart Service Contracts in Trading Day d & I \\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsubsection{System Restart Service Charges (Recoverable)} \begin{dmath} \label{SRScharge_P_D} SRScharge\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} SRScharge\_P\_I(p, i) \end{dmath} \begin{dmath} \label{SRScharge_P_I} SRScharge\_P\_I(p, i) = CS\_P\_I(p, i) \times SRSpayment\_G\_I(i) \end{dmath} \begin{dmath} \label{SRSpayment_G_I} SRSpayment\_G\_I(i) = \displaystyle \sum_{p \in MP(i)} SRSpayment\_P\_I(p, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead SRScharge\_P\_D(p, d) & \$ & P & D & 9.10.40 & System Restart Service amount recoverable from participant p for Trading Day d & (\ref{SRScharge_P_D})\\ \hline SRScharge\_P\_I(p, i) & \$ & P & I & 9.10.41 & System Restart Service amount recoverable from participant p in Trading Interval i & (\ref{SRScharge_P_I})\\ \hline SRSpayment\_G\_I(i) & \$ & G & I & 9.10.27 & System Restart Service amount payable in Trading Interval i & (\ref{SRSpayment_G_I})\\ \hline SRSpayment\_P\_I(p, i) & \$ & P & I & 9.10.26 & System Restart Service amount payable to participant p in Trading Interval i & (\ref{SRSpayment_P_I})\\ \hline CS\_P\_I(p, i) & & P & I & 9.5.6 & Consumption share of participant p in Trading Interval i & (\ref{CS_P_I})\\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsubsection{NCESS Payments} The payment for NCESS Contracts for capacity procured by AEMO to meet the Peak Reserve Capacity Requirement is combined with the payment for residual NCESS Contracts. \begin{dmath} \label{NCESSpayment_P_D} NCESSpayment\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} NCESSpayment\_P\_I(p, i) \end{dmath} \begin{dmath} \label{NCESSpayment_P_I} NCESSpayment\_P\_I(p, i) = \displaystyle \sum_{di \in DI(i)} NCESSpayment\_P\_DI(p, di) \end{dmath} \begin{dmath} \label{NCESSpayment_P_DI} NCESSpayment\_P\_DI(p, di) = \displaystyle \sum_{c \in NCESS(p, di)} NCESSpayment\_C\_DI(c, di) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline NCESSpayment\_P\_D(p, d) & \$ & P & D & 9.10.27A & NCESS amount payable to participant p for Trading Day d & (\ref{NCESSpayment_P_D})\\ \hline NCESSpayment\_P\_I(p, i) & \$ & P & I & 9.10.27B & NCESS amount payable to participant p in Trading Interval i & (\ref{NCESSpayment_P_I})\\ \hline NCESSpayment\_P\_DI(p, di) & \$ & P & DI & 9.10.27C & NCESS amount payable to participant p in Dispatch Interval di & (\ref{NCESSpayment_P_DI})\\ \hline NCESSpayment\_C\_DI(c, di) & \$ & C & DI & 5.9.1 & NCESS amount payable under NCESS Contract c in Dispatch Interval di & I\\ \hline NCESS(d) & \{\} & G & D & Ch 11 & Set of NCESS Contracts in Trading Day d & I \\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline \end{longtable} \subsubsection{NCESS Charges (Recoverable)} The cost of NCESS Contracts for capacity procured by AEMO to meet the Peak Reserve Capacity Requirement is recovered via the Shared Reserve Capacity Cost in $SRCC\_G\_D(d)$. The residual cost of procuring NCESS Contracts is recovered via Consumption Share below. \begin{dmath} \label{NCESScharge_P_D} NCESScharge\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} NCESScharge\_P\_I(p, i) \end{dmath} \begin{dmath} \label{NCESScharge_P_I} NCESScharge\_P\_I(p, i) = CS\_P\_I(p, i) \times NCESSpayment\_G\_I(i) \end{dmath} \begin{dmath} \label{NCESSpayment_G_I} NCESSpayment\_G\_I(i) = \bigg(\sum_{p \in MP(i)} NCESSpayment\_P\_I(p, i)\bigg) - PeakNCESSpayment\_G\_I(i) \end{dmath} \begin{dmath} \label{PeakNCESSpayment_G_I} PeakNCESSpayment\_G\_I(i) = \sum_{p \in MP(i)} PeakNCESSpayment\_P\_I(p, i) \end{dmath} \begin{dmath} \label{PeakNCESSpayment_P_I} PeakNCESSpayment\_P\_I(p, i) = \sum_{di \in DI(i)} PeakNCESSpayment\_P\_DI(p, di) \end{dmath} \begin{dmath} \label{PeakNCESSpayment_P_DI} PeakNCESSpayment\_P\_DI(p, di) = \sum_{c \in NCESS(p, di)} PeakNCESSpayment\_C\_DI(c, di) \end{dmath} \begin{longtable}{|p{4.8cm}|p{0.9cm}|p{0.6cm}|p{0.4cm}|p{1.4cm}|p{5.6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead NCESScharge\_P\_D(p, d) & \$ & P & D & 9.10.44 & NCESS amount recoverable from participant p for Trading Day d & (\ref{NCESScharge_P_D})\\ \hline NCESScharge\_P\_I(p, i) & \$ & P & I & 9.10.45 & NCESS amount recoverable from participant p for Trading Interval i & (\ref{NCESScharge_P_I})\\ \hline NCESSpayment\_G\_I(i) & \$ & G & I & 9.10.27D & NCESS amount payable for Trading Interval i & (\ref{NCESSpayment_G_I})\\ \hline PeakNCESSpayment\_G\_I(i) & \$ & G & I & 9.10.27D & NCESS amount payable for Peak Capacity in Trading Interval i & (\ref{PeakNCESSpayment_G_I})\\ \hline PeakNCESSpayment\_P\_I(p, i) & \$ & P & I & 4.28.4A & NCESS amount payable for Peak Capacity to participant p in Trading Interval i & (\ref{PeakNCESSpayment_P_I})\\ \hline PeakNCESSpayment\_P\_DI(p, di) & \$ & P & DI & 4.28.4A & NCESS amount payable for Peak Capacity to participant p in Dispatch Interval di & (\ref{PeakNCESSpayment_P_DI})\\ \hline CS\_P\_I(p, i) & & P & I & 9.5.6 & Consumption share of participant p in Trading Interval i & (\ref{CS_P_I})\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline MP(d) & \{\} & G & D & Ch 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline NCESS(d) & \{\} & G & D & Ch 11 & Set of NCESS Contracts in Trading Day d & I \\ \hline NCESSpayment\_P\_I(p, i) & \$ & P & I & 9.10.27B & NCESS amount payable to participant p for Trading Interval i & (\ref{NCESSpayment_P_I})\\ \hline PeakNCESSpayment\_C\_DI(c, di) & \$ & C & DI & 4.28.4A & NCESS amount payable for Peak Capacity under NCESS Contract c in Dispatch Interval di & I\\ \hline \end{longtable} \subsubsection{FCESS Uplift Payments} FCESS Uplift Payments are made to Market Participants in respect of their Registered Facilities where the Facility’s \textit{estimated dispatch cost} exceeds its \textit{base compensation amount}. The calculation is intended to ensure that if FCESS Market Clearing Prices are high enough to cover a Facility’s enablement losses, the FCESS Uplift Payment does not over-compensate the Market Participant. The provision of RoCoF Control Service does not qualify a Facility for an FCESS Uplift Payment. \\ The cost of FCESS Uplift Payments is allocated according to the causer pays principle for the relevant FCESS.\\ \begin{dmath} \label{FCESSUpayment_P_D} FCESSUpayment\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} FCESSUpayment\_P\_I(p, i) \end{dmath} \begin{dmath} \label{FCESSUpayment_P_I} FCESSUpayment\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} FCESSUpayment\_F\_I(f, i) \end{dmath} \begin{dmath} \label{FCESSUpayment_F_I} FCESSUpayment\_F\_I(f, i) = \displaystyle \sum_{di \in DI(i)} FCESSUpayment\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{FCESSUpayment_F_DI} FCESSUpayment\_F\_DI(f, di) = \begin{dcases} max(0, RTMDC\_F\_DI(f, di) - RTMBC\_F\_DI(f, di)) & \text{if $FUPEFlag\_F\_DI(f, di) = 1$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{dmath} \label{FUPEFlag_F_DI} FUPEFlag\_F\_DI(f, di) = \begin{dcases} 1 & \text{if $RTMSuspFlag\_G\_DI(di) = 0$} \\ & \text{and $f \in SF(d) \cup SSF(d)$} \\ & \text{and $MISPRICE\_F\_DI(f, di) = 0$} \\ & \text{and $DT\_F\_DI(f, di) > 0$} \\ & \text{and $FCESSQ\_F\_DI(f, di) > 0$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{FCESSQ_F_I} FCESSQ\_F\_DI(f, di) = CRquantity\_F\_DI(f, di) + CLquantity\_F\_DI(f, di) + RRquantity\_F\_DI(f, di) + RLquantity\_F\_DI(f, di) \end{dmath} \begin{longtable}{|p{4.5cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.5cm}|p{5.8cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead FCESSUpayment\_P\_D(p, d) & \$ & P & D & 9.10.3A & FCESS Uplift Payment amount payable to participant p in Trading Day d & (\ref{FCESSUpayment_P_D})\\ \hline FCESSUpayment\_P\_I(p, i) & \$ & P & I & 9.10.3A & FCESS Uplift Payment amount payable to participant p in Trading Interval i & (\ref{FCESSUpayment_P_I})\\ \hline FCESSUpayment\_F\_I(f, i) & \$ & F & I & 9.10.3B & FCESS Uplift Payment amount payable for Facility f in Trading Interval i & (\ref{FCESSUpayment_F_I})\\ \hline FCESSUpayment\_F\_DI(f, di) & \$ & F & DI & 9.10.3C & FCESS Uplift Payment amount payable for Facility f in Dispatch Interval di & (\ref{FCESSUpayment_F_DI})\\ \hline FUPEFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.3F & Flag that is 1 when Facility f is eligible for an FCESS Uplift Payment in Dispatch Interval di, and 0 otherwise & (\ref{FUPEFlag_F_DI})\\ \hline FCESSQ\_F\_DI(f, di) & MW & F & DI & 9.10.3F & Total Frequency Co-optimised Essential System Service Enablement Quantity for Facility f in Dispatch Interval di & (\ref{FCESSQ_F_I})\\ \hline CLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.10(c) & Contingency Reserve Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{CLquantity_F_DI})\\ \hline CRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.6(c) & Contingency Reserve Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{CRquantity_F_DI})\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline DT\_F\_DI(f, di) & MW & F & DI & Ch 11 & Dispatch Target for Facility f in Dispatch Interval di & I\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline RLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.23(c) & Regulation Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{RLquantity_F_DI})\\ \hline RRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.22(c) & Regulation Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{RRquantity_F_DI})\\ \hline RTMBC\_F\_DI(f, di) & \$ & F & DI & 9.10.3E & Real-Time Market base compensation amount for Facility f in Dispatch Interval di & (\ref{RTMBC_F_DI})\\ \hline RTMDC\_F\_DI(f, di) & \$ & F & DI & 9.10.3D & Real-Time Market dispatch cost based on Real-Time Market Offers for Facility f in Dispatch Interval di & (\ref{RTMDC_F_DI})\\ \hline RTMSuspFlag\_G\_DI(di) & Flag & G & DI & 7.11D.6 & RTM Suspension Flag that is 1 if the Real-Time Market was suspended in Dispatch Interval di, and 0 otherwise & I\\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline \end{longtable} \paragraph{RTM Dispatch Cost} The \textit{estimated dispatch cost} is calculated as the sum of (a) the Facility's deemed energy provision costs, determined using the offer price for each dispatched tranche of energy in its FCESS Minimum Dispatch Target; and (b) the Facility's deemed FCESS provision costs, determined using the offer price for each dispatched tranche of the FCESS in its adjusted Essential System Service Enablement Quantity. \begin{dmath} \label{RTMDC_F_DI} RTMDC\_F\_DI(f, di) = RTEDC\_F\_DI(f, di) + CRDC\_F\_DI(f, di) + CLDC\_F\_DI(f, di) + RRDC\_F\_DI(f, di) + RLDC\_F\_DI(f, di) \end{dmath} \textbf{Energy} \begin{dmath} \label{RTMOERank_T_DI} RTMOERank\_T\_DI(t, di) = \text{position of tranche $t$ in set $RTMOE\_F\_DI(f, di)$ ordered by offer tranche number ascending} \end{dmath} \begin{dmath} \label{RTEDC_F_DI} RTEDC\_F\_DI(f, di) = \sum_{t \in RTMOE\_F\_DI(f, di)} RTEDC\_T\_DI(t, di) \end{dmath} \begin{dmath} \label{RTEDC_T_DI} \footnotesize RTEDC\_T\_DI(t, di) = \begin{dcases} RTEQ\_T\_DI(t, di) \times RTEP\_T\_DI(t, di) \times \frac{5}{60}h & \text{if $RTEQTop\_T\_DI(t, di) \le FCESSMinDT\_F\_DI(T2F(t), di)$}\\ (FCESSMinDT\_F\_DI(T2F(t), di) - RTEQBtm\_T\_DI(t, di)) \\ \times RTEP\_T\_DI(t, di) \times \frac{5}{60}h & \text{if $RTEQTop\_T\_DI(t, di) > FCESSMinDT\_F\_DI(T2F(t), di)$} \\ & \text{and $FCESSMinDT\_F\_DI(T2F(t), di) > RTEQBtm\_T\_DI(t, di)$} \\ 0 & {\text{otherwise}} \end{dcases} \end{dmath} \begin{dmath} \label{RTEQTop_T_DI} RTEQTop\_T\_DI(t, di) = RTEQBtm\_T\_DI(t, di) + RTEQ\_T\_DI(t, di) \end{dmath} \begin{dmath} \label{RTEQBtm_T_DI} RTEQBtm\_T\_DI(t, di) = \sum_{\substack{u \in RTMOE\_F\_DI(T2F(t), di) \\ RTMOERank\_T\_DI(u, di) < RTMOERank\_T\_DI(t, di)}} RTEQ\_T\_DI(u, di) \end{dmath} \newpage \textbf{Contingency Raise} \begin{dmath} \label{RTMOCRRank_T_DI} RTMOCRRank\_T\_DI(t, di) = \text{position of tranche $t$ in set $RTMOCR\_F\_DI(f, di)$ ordered by offer tranche number ascending} \end{dmath} \begin{dmath} \label{CRDC_F_DI} CRDC\_F\_DI(f, di) = \sum_{t \in RTMOCR\_F\_DI(f, di)} CRDC\_T\_DI(t, di) \end{dmath} \begin{dmath} \label{CRDC_T_DI} \footnotesize CRDC\_T\_DI(t, di) = \begin{dcases} CRQ\_T\_DI(t, di) \times CRP\_T\_DI(t, di) \times \frac{5}{60}h & \text{if $CRQTop\_T\_DI(t, di) \le CRquantity\_F\_DI(T2F(t), di)$} \\ (CRquantity\_F\_DI(T2F(t), di) - CRQBtm\_T\_DI(t, di)) \\ \times CRP\_T\_DI(t, di) \times \frac{5}{60}h & \text{if $CRQTop\_T\_DI(t, di) > CRquantity\_F\_DI(T2F(t), di)$} \\ & \text{and $CRquantity\_F\_DI(T2F(t), di) > CRQBtm\_T\_DI(t, di)$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{CRQTop_T_DI} CRQTop\_T\_DI(t, di) = CRQBtm\_T\_DI(t, di) + CRQ\_T\_DI(t, di) \end{dmath} \begin{dmath} \label{CRQBtm_T_DI} CRQBtm\_T\_DI(t, di) = \sum_{\substack{u \in RTMOCR\_F\_DI(T2F(t), di) \\ RTMOCRRank\_T\_DI(u, di) < RTMOCRRank\_T\_DI(t, di)}} CRQ\_T\_DI(u, di) \end{dmath} \textbf{Contingency Lower} \begin{dmath} \label{RTMOCLRank_T_DI} RTMOCLRank\_T\_DI(t, di) = \text{position of tranche $t$ in set $RTMOCL\_F\_DI(f, di)$ ordered by offer tranche number ascending} \end{dmath} \begin{dmath} \label{CLDC_F_DI} CLDC\_F\_DI(f, di) = \sum_{t \in RTMOCL\_F\_DI(f, di)} CLDC\_T\_DI(t, di) \end{dmath} \begin{dmath} \label{CLDC_T_DI} \footnotesize CLDC\_T\_DI(t, di) = \begin{dcases} CLQ\_T\_DI(t, di) \times CLP\_T\_DI(t, di) \times \frac{5}{60}h & \text{if $CLQTop\_T\_DI(t, di) \le CLquantity\_F\_DI(T2F(t), di)$} \\ (CLquantity\_F\_DI(T2F(t), di) - CLQBtm\_T\_DI(t, di)) \\ \times CLP\_T\_DI(t, di) \times \frac{5}{60}h & \text{if $CLQTop\_T\_DI(t, di) > CLquantity\_F\_DI(T2F(t), di)$} \\ & \text{and $CLquantity\_F\_DI(T2F(t), di) > CLQBtm\_T\_DI(t, di)$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{CLQTop_T_DI} CLQTop\_T\_DI(t, di) = CLQBtm\_T\_DI(t, di) + CLQ\_T\_DI(t, di) \end{dmath} \begin{dmath} \label{CLQBtm_T_DI} CLQBtm\_T\_DI(t, di) = \sum_{\substack{u \in RTMOCL\_F\_DI(T2F(t), di) \\ RTMOCLRank\_T\_DI(u, di) < RTMOCLRank\_T\_DI(t, di)}} CLQ\_T\_DI(u, di) \end{dmath} \newpage \textbf{Regulation Raise} \begin{dmath} \label{RTMORRRank_T_DI} RTMORRRank\_T\_DI(t, di) = \text{position of tranche $t$ in set $RTMORR\_F\_DI(f, di)$ ordered by offer tranche number ascending} \end{dmath} \begin{dmath} \label{RRDC_F_DI} RRDC\_F\_DI(f, di) = \sum_{t \in RTMORR\_F\_DI(f, di)} RRDC\_T\_DI(t, di) \end{dmath} \begin{dmath} \label{RRDC_T_DI} \footnotesize RRDC\_T\_DI(t, di) = \begin{dcases} RRQ\_T\_DI(t, di) \times RRP\_T\_DI(t, di) \times \frac{5}{60}h & \text{if $RRQTop\_T\_DI(t, di) \le RRquantity\_F\_DI(T2F(t), di)$} \\ (RRquantity\_F\_DI(T2F(t), di) - RRQBtm\_T\_DI(t, di)) \\ \times RRP\_T\_DI(t, di) \times \frac{5}{60}h & \text{if $RRQTop\_T\_DI(t, di) > RRquantity\_F\_DI(T2F(t), di)$} \\ & \text{and $RRquantity\_F\_DI(T2F(t), di) > RRQBtm\_T\_DI(t, di)$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{dmath} \label{RRQTop_T_DI} RRQTop\_T\_DI(t, di) = RRQBtm\_T\_DI(t, di) + RRQ\_T\_DI(t, di) \end{dmath} \begin{dmath} \label{RRQBtm_T_DI} RRQBtm\_T\_DI(t, di) = \sum_{\substack{u \in RTMORR\_F\_DI(T2F(t), di) \\ RTMORRRank\_T\_DI(u, di) < RTMORRRank\_T\_DI(t, di)}} RRQ\_T\_DI(u, di) \end{dmath} \textbf{Regulation Lower} \begin{dmath} \label{RTMORLRank_T_DI} RTMORLRank\_T\_DI(t, di) = \text{position of tranche $t$ in set $RTMORL\_F\_DI(f, di)$ ordered by offer tranche number ascending} \end{dmath} \begin{dmath} \label{RLDC_F_DI} RLDC\_F\_DI(f, di) = \sum_{t \in RTMORL\_F\_DI(f, di)} RLDC\_T\_DI(t, di) \end{dmath} \begin{dmath} \label{RLDC_T_DI} \footnotesize RLDC\_T\_DI(t, di) = \begin{dcases} RLQ\_T\_DI(t, di) \times RLP\_T\_DI(t, di) \times \frac{5}{60}h & \text{if $RLQTop\_T\_DI(t, di) \le RLquantity\_F\_DI(T2F(t), di)$}\\ (RLquantity\_F\_DI(T2F(t), di) - RLQBtm\_T\_DI(t, di)) \\ \times RLP\_T\_DI(t, di) \times \frac{5}{60}h & \text{if $RLQTop\_T\_DI(t, di) > RLquantity\_F\_DI(T2F(t), di)$} \\ & \text{and $RLquantity\_F\_DI(T2F(t), di) > RLQBtm\_T\_DI(t, di)$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{RLQTop_T_DI} RLQTop\_T\_DI(t, di) = RLQBtm\_T\_DI(t, di) + RLQ\_T\_DI(t, di) \end{dmath} \begin{dmath} \label{RLQBtm_T_DI} RLQBtm\_T\_DI(t, di) = \sum_{\substack{u \in RTMORL\_F\_DI(T2F(t), di) \\ RTMORLRank\_T\_DI(u, di) < RTMORLRank\_T\_DI(t, di)}} RLQ\_T\_DI(u, di) \end{dmath} \begin{longtable}{|p{4cm}|p{1.4cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{5.5cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RTMDC\_F\_DI(f, di) & \$ & F & DI & 9.10.3D & Real-Time Market dispatch cost based on Real-Time Market Offers for Facility f in Dispatch Interval di & (\ref{RTMDC_F_DI})\\ \hline RTMOERank\_T\_DI(t, di) & & T & DI & 9.10.3D(a) & The element number of tranche t in $RTMOE\_F\_DI(f, di)$ where 1 is the first tranche for Facility f in Dispatch Interval di & (\ref{RTMOERank_T_DI})\\ \hline RTEDC\_F\_DI(f, di) & \$ & F & DI & 9.10.3D & Real-Time Energy dispatch cost based on Real-Time Market Offers for Facility f in Dispatch Interval di & (\ref{RTEDC_F_DI})\\ \hline RTEDC\_T\_DI(t, di) & \$ & T & DI & 9.10.3D & Real-Time Energy dispatch cost based on Real-Time Market Offers for tranche t in Dispatch Interval di & (\ref{RTEDC_T_DI})\\ \hline RTEQTop\_T\_DI(t, di) & MW & T & DI & 9.10.3D(b) & Real-Time Energy quantity at the top of tranche t in Dispatch Interval di & (\ref{RTEQTop_T_DI})\\ \hline RTEQBtm\_T\_DI(t, di) & MW & T & DI & 9.10.3D(b) & Real-Time Energy quantity at the bottom of tranche t in Dispatch Interval di & (\ref{RTEQBtm_T_DI})\\ \hline RTMOCRRank\_T\_DI(t, di) & & T & DI & 9.10.3D(e) & The element number of tranche t in $RTMOCR\_F\_DI(f, di)$ where 1 is the first tranche for Facility f in Dispatch Interval di & (\ref{RTMOCRRank_T_DI})\\ \hline CRDC\_F\_DI(f, di) & \$ & F & DI & 9.10.3D & Contingency Reserve Raise dispatch cost based on Real-Time Market Offers for Facility f in Dispatch Interval di & (\ref{CRDC_F_DI})\\ \hline CRDC\_T\_DI(t, di) & \$ & T & DI & 9.10.3D & Contingency Reserve Raise dispatch cost based on Real-Time Market Offers for tranche t in Dispatch Interval di & (\ref{CRDC_T_DI})\\ \hline CRQTop\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Contingency Reserve Raise quantity at the top of tranche t in Dispatch Interval di & (\ref{CRQTop_T_DI})\\ \hline CRQBtm\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Contingency Reserve Raise quantity at the bottom of tranche t in Dispatch Interval di & (\ref{CRQBtm_T_DI})\\ \hline RTMOCLRank\_T\_DI(t, di) & & T & DI & 9.10.3D(e) & The element number of tranche t in $RTMOCL\_F\_DI(f, di)$ where 1 is the first tranche for Facility f in Dispatch Interval di & (\ref{RTMOCLRank_T_DI})\\ \hline CLDC\_F\_DI(f, di) & \$ & F & DI & 9.10.3D & Contingency Reserve Lower dispatch cost based on Real-Time Market Offers for Facility f in Dispatch Interval di & (\ref{CLDC_F_DI})\\ \hline CLDC\_T\_DI(t, di) & \$ & T & DI & 9.10.3D & Contingency Reserve Lower dispatch cost based on Real-Time Market Offers for tranche t in Dispatch Interval di & (\ref{CLDC_T_DI})\\ \hline CLQTop\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Contingency Reserve Lower quantity at the top of tranche t in Dispatch Interval di & (\ref{CLQTop_T_DI})\\ \hline CLQBtm\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Contingency Reserve Lower quantity at the bottom of tranche t in Dispatch Interval di & (\ref{CLQBtm_T_DI})\\ \hline RTMORRRank\_T\_DI(t, di) & & T & DI & 9.10.3D(e) & The element number of tranche t in $RTMORR\_F\_DI(f, di)$ where 1 is the first tranche for Facility f in Dispatch Interval di & (\ref{RTMORRRank_T_DI})\\ \hline RRDC\_F\_DI(f, di) & \$ & F & DI & 9.10.3D & Regulation Raise dispatch cost based on Real-Time Market Offers for Facility f in Dispatch Interval di & (\ref{RRDC_F_DI})\\ \hline RRDC\_T\_DI(t, di) & \$ & T & DI & 9.10.3D & Regulation Raise dispatch cost based on Real-Time Market Offers for tranche t in Dispatch Interval di & (\ref{RRDC_T_DI})\\ \hline RRQTop\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Regulation Raise quantity at the top of tranche t in Dispatch Interval di & (\ref{RRQTop_T_DI})\\ \hline RRQBtm\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Regulation Raise quantity at the bottom of tranche t in Dispatch Interval di & (\ref{RRQBtm_T_DI})\\ \hline RTMORLRank\_T\_DI(t, di) & & T & DI & 9.10.3D(e) & The element number of tranche t in $RTMORL\_F\_DI(f, di)$ where 1 is the first tranche for Facility f in Dispatch Interval di & (\ref{RTMORLRank_T_DI})\\ \hline RLDC\_F\_DI(f, di) & \$ & F & DI & 9.10.3D & Regulation Lower dispatch cost based on Real-Time Market Offers for Facility f in Dispatch Interval di & (\ref{RLDC_F_DI})\\ \hline RLDC\_T\_DI(t, di) & \$ & T & DI & 9.10.3D & Regulation Lower dispatch cost based on Real-Time Market Offers for tranche t in Dispatch Interval di & (\ref{RLDC_T_DI})\\ \hline RLQTop\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Regulation Lower quantity at the top of tranche t in Dispatch Interval di & (\ref{RLQTop_T_DI})\\ \hline RLQBtm\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Regulation Lower quantity at the bottom of tranche t in Dispatch Interval di & (\ref{RLQBtm_T_DI})\\ \hline CLP\_T\_DI(t, di) & \$/MW/h & T & DI & 9.10.3D(g) & Contingency Reserve Lower price from tranche t in Dispatch Interval di & I\\ \hline CLQ\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Contingency Reserve Lower quantity from tranche t in Dispatch Interval di & I\\ \hline CLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.10(c) & Contingency Reserve Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{CLquantity_F_DI})\\ \hline CRP\_T\_DI(t, di) & \$/MW/h & T & DI & 9.10.3D(g) & Contingency Reserve Raise price from tranche t in Dispatch Interval di & I\\ \hline CRQ\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Contingency Reserve Raise quantity from tranche t in Dispatch Interval di & I\\ \hline CRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.6(c) & Contingency Reserve Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{CRquantity_F_DI})\\ \hline FCESSMinDT\_F\_DI(f, di) & MW & F & DI & 9.10.3G & FCESS Minimum Dispatch Target for Facility f in Dispatch Interval di & (\ref{FCESSMinDT_F_DI})\\ \hline RLP\_T\_DI(t, di) & \$/MW/h & T & DI & 9.10.3D(g) & Regulation Lower price from tranche t in Dispatch Interval di & I\\ \hline RLQ\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Regulation Lower quantity from tranche t in Dispatch Interval di & I\\ \hline RLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.23(c) & Regulation Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{RLquantity_F_DI})\\ \hline RRP\_T\_DI(t, di) & \$/MW/h & T & DI & 9.10.3D(g) & Regulation Raise price from tranche t in Dispatch Interval di & I\\ \hline RRQ\_T\_DI(t, di) & MW & T & DI & 9.10.3D(f) & Regulation Raise quantity from tranche t in Dispatch Interval di & I\\ \hline RRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.22(c) & Regulation Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{RRquantity_F_DI})\\ \hline RTEP\_T\_DI(t, di) & \$/MWh & T & DI & 9.10.3D(c) & Real-Time Energy price from tranche t in Dispatch Interval di & I\\ \hline RTEQ\_T\_DI(t, di) & MW & T & DI & 9.10.3D(b) & Real-Time Energy quantity from tranche t in Dispatch Interval di & I\\ \hline RTMOCL\_F\_DI(f, di) & \{\} & F & DI & 9.10.3D(e) & Ordered set of tranches representing the Price-Quantity Pairs for In-Service Capacity in the Real-Time Market Offer for Contingency Reserve Lower for Facility f in Dispatch Interval di (ordered by tranche) & I\\ \hline RTMOCR\_F\_DI(f, di) & \{\} & F & DI & 9.10.3D(e) & Ordered set of tranches representing the Price-Quantity Pairs for In-Service Capacity in the Real-Time Market Offer for Contingency Reserve Raise for Facility f in Dispatch Interval di (ordered by tranche) & I\\ \hline RTMOE\_F\_DI(f, di) & \{\} & F & DI & 9.10.3D(a) & Ordered set of tranches representing the Price-Quantity Pairs for In-Service Capacity in the Real-Time Market Offer for energy for Facility f in Dispatch Interval di (ordered by tranche) & I\\ \hline RTMORL\_F\_DI(f, di) & \{\} & F & DI & 9.10.3D(e) & Ordered set of tranches representing the Price-Quantity Pairs for In-Service Capacity in the Real-Time Market Offer for Regulation Lower for Facility f in Dispatch Interval di (ordered by tranche) & I\\ \hline RTMORR\_F\_DI(f, di) & \{\} & F & DI & 9.10.3D(e) & Ordered set of tranches representing the Price-Quantity Pairs for In-Service Capacity in the Real-Time Market Offer for Regulation Raise for Facility f in Dispatch Interval di (ordered by tranche) & I\\ \hline T2F & & T & F & & Association between tranche t and the Facility associated with the tranche & I \\ \hline \end{longtable} \paragraph{RTM Base Compensation} The base compensation amount is calculated as the sum of (a) the Facility’s FCESS Minimum Dispatch Target multiplied by the relevant price for that energy; and (b) the base payment made for each of the four applicable FCESS. \begin{dmath} \label{RTMBC_F_DI} RTMBC\_F\_DI(f, di) = FCESSMinBC\_F\_DI(f, di) + CRBC\_F\_DI(f, di) + CLBC\_F\_DI(f, di) + RRBC\_F\_DI(f, di) + RLBC\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{FCESSMinBC_F_DI} FCESSMinBC\_F\_DI(f, di) = \frac{5}{60}h \times FCESSMinDT\_F\_DI(f, di) \times FRTP\_G\_I(di) \times LF\_F\_D(f, di) \end{dmath} \begin{dmath} \label{CRBC_F_DI} CRBC\_F\_DI(f, di) = \frac{5}{60}h \times CRquantity\_F\_DI(f, di) \times FCRprice\_G\_DI(di) \end{dmath} \begin{dmath} \label{CLBC_F_DI} CLBC\_F\_DI(f, di) = \frac{5}{60}h \times CLquantity\_F\_DI(f, di) \times FCLprice\_G\_DI(di) \end{dmath} \begin{dmath} \label{RRBC_F_DI} RRBC\_F\_DI(f, di) = \frac{5}{60}h \times RRquantity\_F\_DI(f, di) \times FRRprice\_G\_DI(di) \end{dmath} \begin{dmath} \label{RLBC_F_DI} RLBC\_F\_DI(f, di) = \frac{5}{60}h \times RLquantity\_F\_DI(f, di) \times FRLprice\_G\_DI(di) \end{dmath} \begin{longtable}{|p{4cm}|p{1.2cm}|p{0.6cm}|p{0.6cm}|p{1.5cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RTMBC\_F\_DI(f, di) & \$ & F & DI & 9.10.3E & Real-Time Market base compensation amount for Facility f in Dispatch Interval di & (\ref{RTMBC_F_DI})\\ \hline FCESSMinBC\_F\_DI(f, di) & \$ & F & DI & 9.10.3E & FCESS minimum base compensation amount for Facility f in Dispatch Interval di & (\ref{FCESSMinBC_F_DI})\\ \hline CRBC\_F\_DI(f, di) & \$ & F & DI & 9.10.3E & Contingency Reserve Raise base compensation amount for Facility f in Dispatch Interval di & (\ref{CRBC_F_DI})\\ \hline CLBC\_F\_DI(f, di) & \$ & F & DI & 9.10.3E & Contingency Reserve Lower base compensation amount for Facility f in Dispatch Interval di & (\ref{CLBC_F_DI})\\ \hline RRBC\_F\_DI(f, di) & \$ & F & DI & 9.10.3E & Regulation Raise base compensation amount for Facility f in Dispatch Interval di & (\ref{RRBC_F_DI})\\ \hline RLBC\_F\_DI(f, di) & \$ & F & DI & 9.10.3E & Regulation Lower base compensation amount for Facility f in Dispatch Interval di & (\ref{RLBC_F_DI})\\ \hline CLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.10(c) & Contingency Reserve Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{CLquantity_F_DI})\\ \hline CRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.6(c) & Contingency Reserve Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{CRquantity_F_DI})\\ \hline FCESSMinDT\_F\_DI(f, di) & MW & F & DI & 9.10.3G & FCESS Minimum Dispatch Target for Facility f in Dispatch Interval di & (\ref{FCESSMinDT_F_DI})\\ \hline FCLprice\_G\_DI(di) & \$/MW/h & G & DI & Ch 11 & Final Contingency Reserve Lower Market Clearing Price in Dispatch Interval di & I\\ \hline FCRprice\_G\_DI(di) & \$/MW/h & G & DI & Ch 11 & Final Contingency Reserve Raise Market Clearing Price in Dispatch Interval di & I\\ \hline FRLprice\_G\_DI(di) & \$/MW/h & G & DI & Ch 11 & Final Regulation Lower Market Clearing Price in Dispatch Interval di & I\\ \hline FRRprice\_G\_DI(di) & \$/MW/h & G & DI & Ch 11 & Final Regulation Raise Market Clearing Price in Dispatch Interval di & I\\ \hline FRTP\_G\_I(i) & \$/MWh & G & I & Ch 11 & Final Reference Trading Price in Trading Interval i & I\\ \hline LF\_F\_D(f, d) & & F & D & Ch 11 & Loss Factor for Facility f for Trading Day d & (\ref{LF_F_D})\\ \hline RLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.23(c) & Regulation Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{RLquantity_F_DI})\\ \hline RRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.22(c) & Regulation Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{RRquantity_F_DI})\\ \hline \end{longtable} \paragraph{FCESS Minimum Dispatch Target} The FCESS Minimum Dispatch Target is the minimum theoretical Dispatch Target from which a Facility would have been able to provide the Essential System Service Enablement Quantities that were determined for the Facility for the Dispatch Interval. It is usually the same as the Dispatch Target for the Dispatch Interval but may be a lower value e.g. if the Facility is ramping down due to an energy price change and is subject to a binding ramp down rate constraint in the Dispatch Interval. \begin{dmath} \label{FCESSMinDT_F_DI} FCESSMinDT\_F\_DI(f, di) = \begin{dcases} max(0, RaiseMinDT\_F\_DI(f, di), LowerMinDT\_F\_DI(f, di)) & \scalebox{0.9}{\text{if $FUPEFlag\_F\_DI(f, di) = 1$}} \\ 0 & \scalebox{0.9}{\text{otherwise}} \end{dcases} \end{dmath} \begin{dmath} \label{RaiseMinDT_F_DI} RaiseMinDT\_F\_DI(f, di) = \begin{dcases} max(EMCR\_F\_DI(f, di), EMRR\_F\_DI(f, di)) & \scalebox{0.9}{\text{if $CRquantity\_F\_DI(f, di) > 0$ and $RRquantity\_F\_DI(f, di) > 0$}} \\ EMCR\_F\_DI(f, di) & \scalebox{0.9}{\text{if $CRquantity\_F\_DI(f, di) > 0$ and $RRquantity\_F\_DI(f, di) \le 0$}} \\ EMRR\_F\_DI(f, di) & \scalebox{0.9}{\text{if $RRquantity\_F\_DI(f, di) > 0$ and $CRquantity\_F\_DI(f, di) \le 0$}} \\ 0 & \scalebox{0.9}{\text{otherwise}} \end{dcases} \end{dmath} \begin{dmath} \label{LowerMinDT_F_DI} LowerMinDT\_F\_DI(f, di) = \begin{dcases} ( CLquantity\_F\_DI(f, di) + RLquantity\_F\_DI(f, di) \\ + max(EMCL\_F\_DI(f, di), EMRL\_F\_DI(f, di)) ) & \scalebox{0.9}{\text{if $CLquantity\_F\_DI(f, di) > 0$ and $RLquantity\_F\_DI(f, di) > 0$}} \\ EMCL\_F\_DI(f, di) + CLquantity\_F\_DI(f, di) & \scalebox{0.9}{\text{if $CLquantity\_F\_DI(f, di) > 0$ and $RLquantity\_F\_DI(f, di) \le 0$}} \\ EMRL\_F\_DI(f, di) + RLquantity\_F\_DI(f, di) & \scalebox{0.9}{\text{if $RLquantity\_F\_DI(f, di) > 0$ and $CLquantity\_F\_DI(f, di) \le 0$}} \\ 0 & \scalebox{0.9}{\text{otherwise}} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{1.1cm}|p{0.6cm}|p{0.6cm}|p{1.6cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead FCESSMinDT\_F\_DI(f, di) & MW & F & DI & 9.10.3G & FCESS Minimum Dispatch Target for Facility f in Dispatch Interval di & (\ref{FCESSMinDT_F_DI})\\ \hline RaiseMinDT\_F\_DI(f, di) & MW & F & DI & 9.10.3H & Minimum theoretical Dispatch Target from which Facility f could have provided its Essential System Service Enablement Quantities for Contingency Reserve Raise and Regulation Raise in Dispatch Interval di & (\ref{RaiseMinDT_F_DI})\\ \hline LowerMinDT\_F\_DI(f, di) & MW & F & DI & 9.10.3HA & Minimum theoretical Dispatch Target from which Facility f could have provided its Essential System Service Enablement Quantities for Contingency Reserve Lower and Regulation Lower in Dispatch Interval di & (\ref{LowerMinDT_F_DI})\\ \hline CLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.10(c) & Contingency Reserve Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{CLquantity_F_DI})\\ \hline CRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.6(c) & Contingency Reserve Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{CRquantity_F_DI})\\ \hline EMCL\_F\_DI(f, di) & MW & F & DI & 7.4.41(d), 7.4.52 & Enablement Minimum for Contingency Reserve Lower for Facility f in Dispatch Interval di & I\\ \hline EMCR\_F\_DI(f, di) & MW & F & DI & 7.4.41(d), 7.4.52 & Enablement Minimum for Contingency Reserve Raise for Facility f in Dispatch Interval di & I\\ \hline EMRR\_F\_DI(f, di) & MW & F & DI & 7.4.41(d), 7.4.52 & Enablement Minimum for Regulation Raise for Facility f in Dispatch Interval di & I\\ \hline EMRL\_F\_DI(f, di) & MW & F & DI & 7.4.41(d), 7.4.52 & Enablement Minimum for Regulation Lower for Facility f in Dispatch Interval di & I\\ \hline FUPEFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.3F & Flag that is 1 when Facility f is eligible for an FCESS Uplift Payment in Dispatch Interval di, and 0 otherwise & (\ref{FUPEFlag_F_DI})\\ \hline RLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.23(c) & Regulation Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{RLquantity_F_DI})\\ \hline RRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.22(c) & Regulation Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{RRquantity_F_DI})\\ \hline \end{longtable} \newpage \paragraph{FCESS Uplift Shares} For cost recovery purposes, the FCESS Uplift Payment for a Registered Facility in a Dispatch Interval is divided evenly between the different FCESS that were provided by the Registered Facility. \begin{dmath} \label{FCESSCount_F_DI} FCESSCount\_F\_DI(f, di) = \begin{dcases} CREFlag\_F\_DI(f, di) + CLEFlag\_F\_DI(f, di) \\ + RREFlag\_F\_DI(f, di) + RLEFlag\_F\_DI(f, di) & \text{if $FUPEFlag\_F\_DI(f, di) = 1$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{CREFlag_F_DI} CREFlag\_F\_DI(f, di) = \begin{dcases} 1 & \text{if $CRquantity\_F\_DI(f, di) > 0$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{CLEFlag_F_DI} CLEFlag\_F\_DI(f, di) = \begin{dcases} 1 & \text{if $CLquantity\_F\_DI(f, di) > 0$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{RREFlag_F_DI} RREFlag\_F\_DI(f, di) = \begin{dcases} 1 & \text{if $RRquantity\_F\_DI(f, di) > 0$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{RLEFlag_F_DI} RLEFlag\_F\_DI(f, di) = \begin{dcases} 1 & \text{if $RLquantity\_F\_DI(f, di) > 0$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{FCESSUShare_F_DI} FCESSUShare\_F\_DI(f, di) = \begin{dcases} \frac{FCESSUpayment\_F\_DI(f, di) }{FCESSCount\_F\_DI(f, di)} & \text{if $FCESSCount\_F\_DI(f, di) > 0$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{FCESSUShareCR_F_DI} FCESSUShareCR\_F\_DI(f, di) = \begin{dcases} FCESSUShare\_F\_DI(f, di) \times CREFlag\_F\_DI(f, di) & \text{if $FUPEFlag\_F\_DI(f, di) = 1$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{FCESSUShareCL_F_DI} FCESSUShareCL\_F\_DI(f, di) = \begin{dcases} FCESSUShare\_F\_DI(f, di) \times CLEFlag\_F\_DI(f, di) & \text{if $FUPEFlag\_F\_DI(f, di) = 1$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{FCESSUShareRR_F_DI} FCESSUShareRR\_F\_DI(f, di) = \begin{dcases} FCESSUShare\_F\_DI(f, di) \times RREFlag\_F\_DI(f, di) & \text{if $FUPEFlag\_F\_DI(f, di) = 1$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{FCESSUShareRL_F_DI} FCESSUShareRL\_F\_DI(f, di) = \begin{dcases} FCESSUShare\_F\_DI(f, di) \times RLEFlag\_F\_DI(f, di) & \text{if $FUPEFlag\_F\_DI(f, di) = 1$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{1.1cm}|p{0.6cm}|p{0.6cm}|p{1.6cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead FCESSCount\_F\_DI(f, di) & & F & DI & 9.10.3I & Number of FCESS to be allocated a share of the FCESS Uplift Payment for Facility f in Dispatch Interval di & (\ref{FCESSCount_F_DI})\\ \hline CREFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.3I(a) & Flag that is 1 when Facility f was enabled to provide Contingency Reserve Raise in Dispatch Interval di, and 0 otherwise & (\ref{CREFlag_F_DI})\\ \hline CLEFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.3I(b) & Flag that is 1 when Facility f was enabled to provide Contingency Reserve Lower in Dispatch Interval di, and 0 otherwise & (\ref{CLEFlag_F_DI})\\ \hline RREFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.3I(c) & Flag that is 1 when Facility f was enabled to provide Regulation Raise in Dispatch Interval di, and 0 otherwise & (\ref{RREFlag_F_DI})\\ \hline RLEFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.3I(d) & Flag that is 1 when Facility f was enabled to provide Regulation Lower in Dispatch Interval di, and 0 otherwise & (\ref{RLEFlag_F_DI})\\ \hline FCESSUShare\_F\_DI(f, di) & \$ & F & DI & 9.10.3J & Share of FCESS Uplift Payments for Facility f in Dispatch Interval di & (\ref{FCESSUShare_F_DI})\\ \hline FCESSUShareCR\_F\_DI(f, di) & \$ & F & DI & 9.10.3K & Share of FCESS Uplift Payments to be allocated to Contingency Reserve Raise for Facility f in Dispatch Interval di & (\ref{FCESSUShareCR_F_DI})\\ \hline FCESSUShareCL\_F\_DI(f, di) & \$ & F & DI & 9.10.3L & Share of FCESS Uplift Payments to be allocated to Contingency Reserve Lower for Facility f in Dispatch Interval di & (\ref{FCESSUShareCL_F_DI})\\ \hline FCESSUShareRR\_F\_DI(f, di) & \$ & F & DI & 9.10.3N & Share of FCESS Uplift Payments to be allocated to Regulation Raise for Facility f in Dispatch Interval di & (\ref{FCESSUShareRR_F_DI})\\ \hline FCESSUShareRL\_F\_DI(f, di) & \$ & F & DI & 9.10.3O & Share of FCESS Uplift Payments to be allocated to Regulation Lower for Facility f in Dispatch Interval di & (\ref{FCESSUShareRL_F_DI})\\ \hline CLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.10(c) & Contingency Reserve Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{CLquantity_F_DI})\\ \hline CRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.6(c) & Contingency Reserve Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{CRquantity_F_DI})\\ \hline FCESSUpayment\_F\_DI(f, di) & \$ & F & DI & 9.10.3C & FCESS Uplift Payment amount payable for Facility f in Dispatch Interval di & (\ref{FCESSUpayment_F_DI})\\ \hline FUPEFlag\_F\_DI(f, di) & Flag & F & DI & 9.10.3F & Flag that is 1 when Facility f is eligible for an FCESS Uplift Payment in Dispatch Interval di, and 0 otherwise & (\ref{FUPEFlag_F_DI})\\ \hline RLquantity\_F\_DI(f, di) & MW & F & DI & 9.10.23(c) & Regulation Lower enablement quantity for Facility f in Dispatch Interval di & (\ref{RLquantity_F_DI})\\ \hline RRquantity\_F\_DI(f, di) & MW & F & DI & 9.10.22(c) & Regulation Raise enablement quantity for Facility f in Dispatch Interval di & (\ref{RRquantity_F_DI})\\ \hline \end{longtable} \subsection{Reserve Capacity} Reserve Capacity is split into the following parts: \begin{itemize} \item Capacity Payments for unallocated Capacity Credits. \item Capacity Credit Over-allocations Payments for receiving more Capacity Credit Allocations than the IRCR. \item Supplementary Capacity Payments associated with a Supplementary Capacity Contract. \item TRCC Charges to fund the cost of Capacity up to the Reserve Capacity Requirement. \item SRCC Charges to fund the payment of Capacity in excess of the Reserve Capacity Requirement. \item Capacity Cost Refunds charges resulting from failure to meet obligations relating to Capacity Credits. \item Intermittent Load Refunds charges for Intermittent Load Refunds. \end{itemize} \begin{dmath} \label{RCSA_P_D} RCSA\_P\_D(p, d) = CPP\_P\_D(p, d) - CPC\_P\_D(p, d) \end{dmath} \begin{dmath} \label{CPP_P_D} CPP\_P\_D(p, d) = CCSA\_P\_D(p, d) - IMLR\_P\_D(p, d) + SUPCAPSA\_P\_D(p, d) - CCR\_P\_D(p, d) + CCAOASA\_P\_D(p, d) \end{dmath} \begin{dmath} \label{CPC_P_D} CPC\_P\_D(p, d) = TRCC\_P\_D(p, d) + SRCC\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead RCSA\_P\_D(p, d) & \$ & P & D & 9.8.2 & Reserve Capacity settlement amount for participant p in Trading Day d & (\ref{RCSA_P_D})\\ \hline CPP\_P\_D(p, d) & \$ & P & D & 9.8.3 & Capacity Provider Payment for participant p in Trading Day d & (\ref{CPP_P_D})\\ \hline CPC\_P\_D(p, d) & \$ & P & D & 9.8.4 & Capacity Purchaser Charge for participant p in Trading Day d & (\ref{CPC_P_D})\\ \hline CCSA\_P\_D(p, d) & \$ & P & D & 9.8.3(b) & Payment for non-allocated Capacity Credits for participant p in Trading Day d & (\ref{CCSA_P_D})\\ \hline IMLR\_P\_D(p, d) & \$ & P & D & 4.29.3(dA) & Intermittent Load Refunds for participant p in Trading Day d & (\ref{IMLR_P_D})\\ \hline SUPCAPSA\_P\_D(p, d) & \$ & P & D & 9.8.3(d) & Payment to be made under Supplementary Capacity Contracts to participant p in Trading Day d & I\\ \hline CCR\_P\_D(p, d) & \$ & P & D & 4.26.2E & Capacity Cost Refund charged to participant p in Trading Day d & (\ref{CCR_P_D})\\ \hline CCAOASA\_P\_D(p, d) & \$ & P & D & 9.8.3(f) & Capacity Credit Allocation over-allocation Payment (when Capacity Credit Allocations exceed IRCR) for participant p in Trading Day d & (\ref{CCAOASA_P_D})\\ \hline TRCC\_P\_D(p, d) & \$ & P & D & 9.8.4(a) & Charge to cover the Targeted Reserve Capacity Cost for participant p in Trading Day d & (\ref{TRCC_P_D})\\ \hline SRCC\_P\_D(p, d) & \$ & P & D & 9.8.4(b) & Charge to cover the Shared Reserve Capacity Cost for participant p in Trading Day d & (\ref{SRCC_P_D})\\ \hline \end{longtable} \subsubsection{Capacity Payments} \begin{dmath} \label{CCSA_P_D} CCSA\_P\_D(p, d) = \displaystyle \sum_{f \in CCF(p, d)} CCSA\_F\_D(f, d) \end{dmath} \begin{dmath} \label{CCSA_F_D} CCSA\_F\_D(f, d) = (CC\_F\_D(f, d) - CCAM\_F\_D(f, d)) \times RCP\_F\_D(f, d) \end{dmath} \begin{dmath} \label{CCAM_F_D} CCAM\_F\_D(f, d) = \displaystyle \sum_{a \in CCAM(f, d)}CCAQ\_A\_D(a) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead CCSA\_P\_D(p, d) & \$ & P & D & 9.8.3(b) & Payment for non-allocated Capacity Credits for participant p in Trading Day d & (\ref{CCSA_P_D})\\ \hline CCSA\_F\_D(f, d) & \$ & F & D & & Payment for non-allocated Capacity Credits for Facility f in Trading Day d & (\ref{CCSA_F_D})\\ \hline CC\_F\_D(f, d) & MW & F & D & Ch 11 & Capacity Credits associated with Facility f on Trading Day d & I\\ \hline CCAM\_F\_D(f, d) & MW & F & D & 9.8.3(b)iii & Number of Capacity Credits allocated to another Market Participant in relation to Facility f in Trading Day d & (\ref{CCAM_F_D})\\ \hline CCAQ\_A\_D(a) & MW & A & D & & Number of Capacity Credits associated with Capacity Credit Allocation a & I\\ \hline RCP\_F\_D(f, d) & \$/MW & F & D & Ch 11 & Facility Daily Reserve Capacity Price for Facility f in Trading Day d & (\ref{RCP_F_D})\\ \hline CCAM(f, d) & \{\} & F & D & & Set of Capacity Credit Allocations made by Facility f in Trading Day d & I\\ \hline CCF(d) & \{\} & G & D & Ch 11 & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline \end{longtable} \subsubsection{Capacity Credit Over-Allocations Payment} \begin{dmath} \label{CCAOASA_P_D} CCAOASA\_P\_D(p, d) = CCAOA\_P\_D(p, d) \times EAP\_P\_D(p, d) \end{dmath} \begin{dmath} \label{CCAOA_P_D} CCAOA\_P\_D(p, d) = max(0, CCAR\_P\_D(p, d) - IRCR\_P\_M(p, d)) \end{dmath} \begin{dmath} \label{EAP_P_D} EAP\_P\_D(p, d) = \begin{dcases} \frac{\displaystyle \sum_{a \in CCAR(p, d)}CCAQ\_A\_D(a) \times RCP\_F\_D(A2F(a), d)}{CCAR\_P\_D(p, d)} & \text{for $CCAR\_P\_D(p, d) \neq 0$}\\ 0 & \text{for $CCAR\_P\_D(p, d) = 0$} \end{dcases} \end{dmath} \begin{dmath} \label{CCAR_P_D} CCAR\_P\_D(p, d) = \displaystyle \sum_{a \in CCAR(p, d)}CCAQ\_A\_D(a) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead CCAOASA\_P\_D(p, d) & \$ & P & D & 9.8.3(f) & Capacity Credit Allocation over-allocation Payment (when Capacity Credit Allocations exceed IRCR) for participant p in Trading Day d & (\ref{CCAOASA_P_D})\\ \hline CCAOA\_P\_D(p, d) & MW & P & D & & Number of Capacity Credit Allocations received by participant p in excess of its IRCR for Trading Day d & (\ref{CCAOA_P_D})\\ \hline IRCR\_P\_M(p, m) & MW & P & M & 4.28.7, 4.28.11A & Individual Reserve Capacity Requirement for participant p for Trading Month m & (\ref{IRCR_P_M})\\ \hline CCAR\_P\_D(p, d) & MW & P & D & & Number of Capacity Credits received by participant p through Capacity Credit Allocations for Trading Day d & (\ref{CCAR_P_D})\\ \hline EAP\_P\_D(p, d) & \$/MW & P & D & 9.8.3(i) & Excess allocation price for participant p in Trading Day d & (\ref{EAP_P_D})\\ \hline RCP\_F\_D(f, d) & \$/MW & F & D & Ch 11 & Facility Daily Reserve Capacity Price for Facility f in Trading Day d & (\ref{RCP_F_D})\\ \hline CCAQ\_A\_D(a) & MW & A & D & & Number of Capacity Credits associated with Capacity Credit Allocation a & I\\ \hline CCAR(p, d) & \{\} & P & D & & Set of Capacity Credit Allocations received by participant p (from Facility f) in Trading Day d & I\\ \hline \end{longtable} \subsubsection{TRCC Charges} \begin{dmath} \label{TRCC_P_D} TRCC\_P\_D(p, d) = \begin{cases} SS\_P\_D(p, d) \times TRCC\_G\_D(d) & \text{for $TRCC\_G\_D(d) \neq 0$} \\ 0 & \text{otherwise} \end{cases} \end{dmath} \begin{dmath} \label{SS_P_D} SS\_P\_D(p, d) = \frac{CCASF\_P\_D(p, d)}{CCASF\_G\_D(d)} \end{dmath} \begin{dmath} \label{CCASF_G_D} CCASF\_G\_D(d) = \displaystyle \sum_{p \in P(d)} CCASF\_P\_D(p, d) \end{dmath} \begin{dmath} \label{CCASF_P_D} CCASF\_P\_D(p, d) = max(0, IRCR\_P\_M(p, d) - CCAR\_P\_D(p, d)) \end{dmath} \begin{dmath} \label{IRCR_P_M} IRCR\_P\_M(p, m) = \begin{dcases} IRCR3\_P\_M(p, m) & \text{if $IRCR3NullFlag\_G\_M(m) = 0$}\\ IRCR2\_P\_M(p, m) & \text{if $IRCR2NullFlag\_G\_M(m) = 0$ and $IRCR3NullFlag\_G\_M(m) = 1$}\\ IRCR1\_P\_M(p, m) & \text{if $IRCR1NullFlag\_G\_M(m) = 0$ and $IRCR3NullFlag\_G\_M(m) = 1$}\\ & \ \text{and $IRCR2NullFlag\_G\_M(m) = 1$}\\ estIRCR0\_P\_M(p, m) & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead TRCC\_P\_D(p, d) & \$ & P & D & 9.8.4(a) & Charge to cover the Targeted Reserve Capacity Cost for participant p in Trading Day d & (\ref{TRCC_P_D})\\ \hline TRCC\_G\_D(d) & \$ & G & D & 4.28.1(a) & Targeted Reserve Capacity Cost in Trading Day d & (\ref{TRCC_G_D})\\ \hline SS\_P\_D(p, d) & & P & D & 9.8.4(d) & Shortfall share for participant p in Trading Day d & (\ref{SS_P_D})\\ \hline CCASF\_G\_D(d) & MW & G & D & & The sum of the amount IRCR exceeds Capacity Credit Allocations received by Market Participants in Trading Day d & (\ref{CCASF_G_D})\\ \hline CCASF\_P\_D(p, d) & MW & P & D & & The amount IRCR exceeds Capacity Credit Allocations received by participant p in Trading Day d & (\ref{CCASF_P_D})\\ \hline IRCR\_P\_M(p, m) & MW & P & M & 4.28.7, 4.28.11A & Individual Reserve Capacity Requirement for participant p for Trading Month m & (\ref{IRCR_P_M})\\ \hline IRCR3\_P\_M(p, m) & MW & P & M & 4.28.11A & Third adjustment of the Individual Reserve Capacity Requirement for participant p for Trading Month m & I\\ \hline IRCR2\_P\_M(p, m) & MW & P & M & 4.28.11A & Second adjustment of the Individual Reserve Capacity Requirement for participant p for Trading Month m & I\\ \hline IRCR1\_P\_M(p, m) & MW & P & M & 4.28.11A & First adjustment of the Individual Reserve Capacity Requirement for participant p for Trading Month m & I\\ \hline estIRCR0\_P\_M(p, m) & MW & P & M & 4.28.7 & Individual Reserve Capacity Requirement (prior to any adjustments) (including estimation) for participant p for Trading Month m & (\ref{estIRCR0_P_M})\\ \hline IRCR3NullFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when the third adjustment of the Individual Reserve Capacity Requirements have not been published for Trading Month m, and 0 otherwise & I\\ \hline IRCR2NullFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when the second adjustment of the Individual Reserve Capacity Requirements have not been published for Trading Month m, and 0 otherwise & I\\ \hline IRCR1NullFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when the first adjustment of the Individual Reserve Capacity Requirements have not been published for Trading Month m, and 0 otherwise & I\\ \hline CCAR\_P\_D(p, d) & MW & P & D & & Number of Capacity Credits received by participant p through Capacity Credit Allocations in Trading Day d & (\ref{CCAR_P_D})\\ \hline P(d) & \{\} & G & D & Ch 11 & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline \end{longtable} \paragraph{Targeted Reserve Capacity Cost} MR 4.28.1(a) outlines the Targeted Reserve Capacity Cost as the cost of Capacity Credits acquired by AEMO (not traded bilaterally through a Capacity Credit Allocation) to just meet the Reserve Capacity Requirement. To implement this the following steps are followed.\\ \textbf{Step 1}: Determine how many Capacity Credits need to be acquired by AEMO to just meet the Reserve Capacity Requirement. \begin{dmath} \label{TRCCQ_G_D} TRCCQ\_G\_D(d) = min(RCR\_G\_CY(d), CC\_G\_D(d)) - (CCAR\_G\_D(d) - CCAOA\_G\_D(d)) \end{dmath} \begin{dmath} \label{CC_G_D} CC\_G\_D(d) = \displaystyle \sum_{f \in CCF(d)} CC\_F\_D(f, d) \end{dmath} \begin{dmath} \label{CCAR_G_D} CCAR\_G\_D(d) = \displaystyle \sum_{p \in P(d)} CCAR\_P\_D(p, d) \end{dmath} \begin{dmath} \label{CCAOA_G_D} CCAOA\_G\_D(d) = \displaystyle \sum_{p \in P(d)} CCAOA\_P\_D(p, d) \end{dmath} \textbf{Step 2}: Identify the set of all Capacity Credits acquired by AEMO and order them by descending price. \begin{dmath} \label{CCTRCC_G_D} CCTRCC\_G\_D(d) = \{\text{$t: T2P(t) \in P(d)$ or $T2F(t)) \in CCF(d)$} \} \\ \text{ordered by descending $CCP\_T\_D(t, d)$ and then alphabetically, where $t \in CCTRCC\_G\_D(d)$} \end{dmath} \begin{dmath} \label{CCP_T_D} CCP\_T\_D(t, d) = \begin{dcases} EAP\_P\_D(t, d) & \text{for $t \in P(d)$}\\ RCP\_F\_D(T2F(t), d) & \text{for $t \in CCF(d)$}\\ \end{dcases} \end{dmath} \begin{dmath} \label{CCQ_T_D} CCQ\_T\_D(t, d) = \begin{dcases} CCAOA\_P\_D(t, d) & \text{for $t \in P(d)$}\\ CC\_F\_D(t, d) - CCAM\_F\_D(t, d) & \text{for $t \in CCF(d)$}\\ \end{dcases} \end{dmath} \begin{dmath} \label{TRCCrank_T_D} TRCCrank\_T\_D(t, d) = \text{Position of price-quantity pair $t$ in $CCTRCC\_G\_D(d)$} \end{dmath} \textbf{Step 3}: Determine the cost of Capacity Credits acquired by AEMO to just meet the Reserve Capacity Target. \begin{dmath} \label{TRCC_G_D} TRCC\_G\_D(d) = \displaystyle \sum_{t \in CCTRCC\_G\_D} CCP\_T\_D(t, d) \times min \left( CCQ\_T\_D(t, d), max(0, TRCCQ\_G\_D(d) - CCCQ\_T\_D(t, d) )\right) \end{dmath} \begin{dmath} \label{CCCQ_T_D} CCCQ\_T\_D(t, d) = \displaystyle \sum_{\substack{u \in CCTRCC\_G\_D(d) \\ TRCCrank\_T\_D(u, d) < TRCCrank\_T\_D(t, d)}} CCQ\_T\_D(u, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead TRCCQ\_G\_D(d) & MW & G & D & 4.28.1(a) & Number of Capacity Credits acquired by AEMO to meet the Reserve Capacity Requirement after allowing for Capacity Credits traded bilaterally for Trading Day d & (\ref{TRCCQ_G_D})\\ \hline RCR\_G\_CY(cy) & MW & G & CY & 4.6.1 & Reserve Capacity Requirement in Capacity Year cy & I\\ \hline CC\_G\_D(d) & MW & G & D & & Number of bilaterally tradeable Capacity Credits for Trading Day d & (\ref{CC_G_D})\\ \hline CC\_F\_D(f, d) & MW & F & D & Ch 11 & Capacity Credits associated with Facility f on Trading Day d & I\\ \hline CCAR\_G\_D(d) & MW & G & D & & Number of Capacity Credits received through Capacity Credit Allocations in Trading Day d & (\ref{CCAR_G_D})\\ \hline CCAR\_P\_D(p, d) & MW & P & D & & Number of Capacity Credits received by participant p through Capacity Credit Allocations in Trading Day d & (\ref{CCAR_P_D})\\ \hline CCAM\_F\_D(f, d) & MW & F & D & 9.8.3(b)iii & Number of Capacity Credits allocated to another Market Participant in relation to Facility f in Trading Day d & (\ref{CCAM_F_D})\\ \hline CCAOA\_G\_D(d) & MW & G & D & & Sum of Capacity Credit Allocations received in excess of a Market Participant's IRCR for Trading Day d & (\ref{CCAOA_G_D})\\ \hline CCAOA\_P\_D(p, d) & MW & P & D & & Number of Capacity Credit Allocations received by participant p in excess of its IRCR for Trading Day d & (\ref{CCAOA_P_D})\\ \hline CCTRCC\_G\_D(d) & \{\} & G & D & & Ordered set of all price-quantity pairs associated with Capacity Credits used in the calculation of the Targeted Reserve Capacity Cost for Trading Day d (ordered by descending $TRCCrank\_T\_D(t, d)$) & (\ref{CCTRCC_G_D})\\ \hline CCP\_T\_D(t, d) & \$/MW & T & D & & Daily capacity price for tranche t in Trading Day d & (\ref{CCP_T_D})\\ \hline CCQ\_T\_D(t, d) & MW & T & D & & Capacity Credits associated with tranche t on Trading Day d & (\ref{CCQ_T_D})\\ \hline CCCQ\_T\_D(t, d) & MW & T & D & & Sum of Capacity Credits with a lower $TRCCrank\_T\_D(t, d)$ than tranche t on Trading Day d & (\ref{CCCQ_T_D})\\ \hline RCP\_F\_D(f, d) & \$/MW & F & D & Ch 11 & Facility Daily Reserve Capacity Price for Facility f in Trading Day d & (\ref{RCP_F_D})\\ \hline EAP\_P\_D(p, d) & \$/MW & P & D & 9.8.3(i) & Excess allocation price for participant p in Trading Day d & (\ref{EAP_P_D})\\ \hline TRCCrank\_T\_D(t, d) & & T & D & & The element number of tranche t in $CCTRCC\_G\_D(d)$ where 1 is the price-quantity pair with the highest price & (\ref{TRCCrank_T_D})\\ \hline TRCC\_G\_D(d) & \$ & G & D & 4.28.1(a) & Targeted Reserve Capacity Cost in Trading Day d & (\ref{TRCC_G_D})\\ \hline CCF(d) & \{\} & G & D & Ch 11 & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline P(d) & \{\} & G & D & Ch 11 & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline \end{longtable} \subsubsection{SRCC Charges} \begin{dmath} \label{SRCC_P_D} SRCC\_P\_D(p, d) = IRCRS\_P\_M(p, d) \times SRCC\_G\_D(d) \end{dmath} \begin{dmath} \label{SRCC_G_D} SRCC\_G\_D(d) = ECCSA\_G\_D(d) + PeakNCESSpayment\_G\_D(d) + SUPCAPSA\_G\_D(d) - IMLR\_G\_D(d) - RCSD\_G\_D(d) - DSPRCSD\_G\_D(d) - CCR\_G\_D(d) \end{dmath} \begin{dmath} \label{ECCSA_G_D} ECCSA\_G\_D(d) = CCSA\_G\_D(d) + CCAOASA\_G\_D(d) - TRCC\_G\_D(d) \end{dmath} \begin{dmath} \label{SUPCAPSA_G_D} SUPCAPSA\_G\_D(d) = \sum_{p \in P(d)} SUPCAPSA\_P\_D(p, d) \end{dmath} \begin{dmath} \label{IMLR_G_D} IMLR\_G\_D(d) = \sum_{p \in P(d)} IMLR\_P\_D(p, d) \end{dmath} \begin{dmath} \label{CCSA_G_D} CCSA\_G\_D(d) = \sum_{p \in P(d)} CCSA\_P\_D(p, d) \end{dmath} \begin{dmath} \label{CCAOASA_G_D} CCAOASA\_G\_D(d) = \sum_{p \in P(d)} CCAOASA\_P\_D(p, d) \end{dmath} \begin{dmath} \label{IRCRS_P_M} IRCRS\_P\_M(p, m) = \frac{IRCR\_P\_M(p, m)}{IRCR\_G\_M(m)} \end{dmath} \begin{dmath} \label{IRCR_G_M} IRCR\_G\_M(m) = \sum_{p \in P\_M(m)} IRCR\_P\_M(p, m) \end{dmath} \begin{dmath} \label{CCR_G_D} CCR\_G\_D(d) = \sum_{i \in I(d)} CCR\_G\_I(i) \end{dmath} \begin{dmath} \label{CCR_G_I} CCR\_G\_I(i) = \sum_{p \in P(i)} CCR\_P\_I(p, i) \end{dmath} \begin{dmath} \label{PeakNCESSpayment_G_D} PeakNCESSpayment\_G\_D(d) = \sum_{i \in I(d)} PeakNCESSpayment\_G\_I(i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead SRCC\_P\_D(p, d) & \$ & P & D & 9.8.4(b) & Charge to cover the Shared Reserve Capacity Cost for participant p in Trading Day d & (\ref{SRCC_P_D})\\ \hline SRCC\_G\_D(d) & \$ & G & D & 4.28.4 & Shared Reserve Capacity Cost for Trading Day d & (\ref{SRCC_G_D})\\ \hline ECCSA\_G\_D(d) & \$ & G & D & 4.28.4(a) & Payments made for Capacity Credits in excess of the Reserve Capacity Requirement for Trading Day d & (\ref{ECCSA_G_D})\\ \hline SUPCAPSA\_G\_D(d) & \$ & G & D & 4.28.4(b) & Payment to be made under Supplementary Capacity Contracts in Trading Day d & (\ref{SUPCAPSA_G_D})\\ \hline IMLR\_G\_D(d) & \$ & G & D & 4.28.4(c) & Intermittent Load Refunds for Trading Day d & (\ref{IMLR_G_D})\\ \hline CCSA\_G\_D(d) & \$ & G & D & & Payment for non-allocated Capacity Credits in Trading Day d & (\ref{CCSA_G_D})\\ \hline CCAOASA\_G\_D(d) & \$ & G & D & & Capacity Credit Allocation over-allocation payment (when Capacity Credit Allocations exceed IRCR) in Trading Day d & (\ref{CCAOASA_G_D})\\ \hline IRCRS\_P\_M(p, m) & & P & M & 9.8.4(f) & Capacity share for participant p for Trading Month m & (\ref{IRCRS_P_M})\\ \hline IRCR\_G\_M(m) & MW & G & M & & Sum of the all Individual Reserve Capacity Requirement for Trading Month m & (\ref{IRCR_G_M})\\ \hline CCR\_G\_D(d) & \$ & G & D & 4.28.4(cA) & Capacity Cost Refunds charged in Trading Day d & (\ref{CCR_G_D})\\ \hline CCR\_G\_I(i) & \$ & G & I & 4.26.6(b) & Capacity Cost Refunds charged in Trading Interval i & (\ref{CCR_G_I})\\ \hline PeakNCESSpayment\_G\_D(d) & \$ & G & D & 4.28.4(aA) & NCESS amount payable for Peak Capacity in Trading Day d & (\ref{PeakNCESSpayment_G_D})\\ \hline CCAOASA\_P\_D(p, d) & \$ & P & D & 9.8.3(f) & Capacity Credit Allocation over-allocation payment (when Capacity Credit Allocations exceed IRCR) for participant p in Trading Day d & (\ref{CCAOASA_P_D})\\ \hline CCR\_P\_I(p, i) & \$ & P & I & 4.26.2F & Trading Interval Capacity Cost Refund charged to participant p in Trading Interval i & (\ref{CCR_P_I})\\ \hline CCSA\_P\_D(p, d) & \$ & P & D & 9.8.3(b) & Payment for non-allocated Capacity Credits for participant p in Trading Day d & (\ref{CCSA_P_D})\\ \hline DSPRCSD\_G\_D(d) & \$ & G & D & 4.28.4(b), 4.28.4(d) & Total amount drawn under a DSP Reserve Capacity Security by AEMO for Trading Day d & I\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline IMLR\_P\_D(p, d) & \$ & P & D & 4.29.3(dA) & Intermittent Load Refunds for participant p in Trading Day d & (\ref{IMLR_P_D})\\ \hline IRCR\_P\_M(p, m) & MW & P & M & 4.28.7, 4.28.11A & Individual Reserve Capacity Requirement for participant p for Trading Month m & (\ref{IRCR_P_M})\\ \hline P(d) & \{\} & G & D & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline PeakNCESSpayment\_G\_I(i) & \$ & G & I & 9.10.27D & NCESS amount payable for Peak Capacity in Trading Interval i & (\ref{PeakNCESSpayment_G_I})\\ \hline RCSD\_G\_D(d) & \$ & G & D & 4.28.4(b), 4.28.4(d) & Total amount drawn under a Reserve Capacity Security by AEMO for Trading Day d & I\\ \hline SUPCAPSA\_P\_D(p, d) & \$ & P & D & 9.8.3(d) & Payment to be made under Supplementary Capacity Contracts to participant p in Trading Day d & I\\ \hline TRCC\_G\_D(d) & \$ & G & D & 4.28.1(a) & Targeted Reserve Capacity Cost in Trading Day d & (\ref{TRCC_G_D})\\ \hline \end{longtable} \subsubsection{Capacity Cost Refunds} \paragraph{Refund Aggregations} \begin{dmath} \label{CCR_P_D} CCR\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CCR\_P\_I(p, i) \end{dmath} \begin{dmath} \label{CCR_P_I} CCR\_P\_I(p, i) = GCCR\_P\_I(p, i) + DSPCCR\_P\_I(p, i) \end{dmath} \begin{dmath} \label{GCCR_P_I} GCCR\_P\_I(p, i) = min(MAXPGR\_P\_CY(p, i) - CGCCR\_P\_I(p, i), GRCDR\_P\_I(p, i) + NSR\_P\_I(p, i)) \end{dmath} \begin{dmath} \label{CGCCR_P_I} CGCCR\_P\_I(p, i) = CGCCRstart\_P\_D(p, d) + \displaystyle \sum_{j \in PITD(i)} GCCR\_P\_I(p, j) \end{dmath} \begin{dmath} \label{GRCDR_P_I} GRCDR\_P\_I(p, i) = \displaystyle \sum_{f \in SF(p, i) \cup SSF(p, i) \cup NSF(p, i) \cup indSF(p, i) \cup indSSF(p, i) \cup indNSF(p, i)} FRCDR\_F\_I(f, i) \end{dmath} \begin{dmath} \label{DSPCCR_P_I} DSPCCR\_P\_I(p, i) = \displaystyle \sum_{f \in DSP(p, i) \cup indDSP(p, i)} DSPCCR\_F\_I(f, i) \end{dmath} \begin{dmath} \label{DSPCCR_F_I} DSPCCR\_F\_I(f, i) = min(MAXFR\_F\_CY(f, i) - CDSPCCR\_F\_I(f, i), DSPCSR\_F\_I(f, i) + FRCDR\_F\_I(f, i)) \end{dmath} \begin{dmath} \label{CDSPCCR_F_I} CDSPCCR\_F\_I(f, i) = CDSPCCRstart\_F\_D(f, i) + \displaystyle \sum_{j \in PITD(i)} DSPCCR\_F\_I(f, j) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead CCR\_P\_D(p, d) & \$ & P & D & 4.26.2E & Capacity Cost Refund charged to participant p in Trading Day d & (\ref{CCR_P_D})\\ \hline CCR\_P\_I(p, i) & \$ & P & I & 4.26.2F & Trading Interval Capacity Cost Refund charged to participant p in Trading Interval i & (\ref{CCR_P_I})\\ \hline GCCR\_P\_I(p, i) & \$ & P & I & 4.26.3 & Generation Capacity Cost Refund for participant p in Trading Interval i & (\ref{GCCR_P_I})\\ \hline DSPCCR\_P\_I(p, i) & \$ & P & I & 4.26.2F(b) & Sum of DSP Capacity Cost Refunds for participant p in Trading Interval i & (\ref{DSPCCR_P_I})\\ \hline DSPCCR\_F\_I(f, i) & \$ & F & I & 4.26.3A & DSP Capacity Cost Refund for Facility f in Trading Interval i & (\ref{DSPCCR_F_I})\\ \hline CDSPCCR\_F\_I(f, i) & \$ & F & I & 4.26.3A & Sum of DSP Capacity Cost Refund for Facility f in Trading Intervals in the same Capacity Year as, but prior to, Trading Interval i & (\ref{CDSPCCR_F_I})\\ \hline CDSPCCRstart\_F\_D(f, d) & \$ & F & D & 4.26.3A & Sum of DSP Capacity Cost Refund for Facility f in the same Capacity Year as, but prior to, Trading Day d & I\\ \hline CGCCR\_P\_I(p, i) & \$ & P & I & 4.26.3 & Sum of Generation Capacity Cost Refund for participant p in Trading Intervals in the same Capacity Year as, but prior to, Trading Interval i & (\ref{CGCCR_P_I})\\ \hline CGCCRstart\_P\_D(p, d) & \$ & P & D & 4.26.3 & Sum of Generation Capacity Cost Refund for participant p in the same Capacity Year as, but prior to, Trading Day d & I\\ \hline MAXPGR\_P\_CY(p, cy) & \$ & P & CY & Ch 11 & Maximum Participant Generation Refund for participant p in Capacity Year cy & (\ref{MAXPGR_P_CY})\\ \hline GRCDR\_P\_I(p, i) & \$ & P & I & 4.26.1I & Generation Reserve Capacity Deficit Refund for participant p in Trading Interval i & (\ref{GRCDR_P_I})\\ \hline FRCDR\_F\_I(f, i) & \$ & F & I & 4.26.1A & Facility Reserve Capacity Deficit Refund for Facility f in Trading Interval i & (\ref{FRCDR_F_I})\\ \hline DSPCSR\_F\_I(f, i) & \$ & F & I & 4.26.3A(b)i & DSP capacity shortfall refund for Facility f in Trading Interval i & (\ref{DSPCSR_F_I})\\ \hline NSR\_P\_I(p, i) & \$ & P & I & 4.26.3(b) & Net STEM Refund for participant p in Trading Interval i & (\ref{NSR_P_I})\\ \hline MAXFR\_F\_CY(f, cy) & \$ & F & CY & Ch 11 & Maximum Facility Refund for Facility f in Capacity Year cy & (\ref{MAXFR_F_CY})\\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline NSF(d) & \{\} & G & D & Ch 11 & Set of Non-Scheduled Facilities in Trading Day d & (\ref{NSF}) \\ \hline DSP(d) & \{\} & G & D & Ch 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline PITD(i) & \{\} & G & I & & Set of Trading Intervals in the same Trading Day as, but prior to, Trading Interval i & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \paragraph{Refund Caps} The calculations of $MAXFR\_F\_CY$, $MAXGR\_P\_CY$ and $MAXPGR\_P\_CY$ require calculations for all Trading Days in the Capacity Year. This is important to note as very few other calculations require this forward-looking calculation. In order to perform this forward-looking calculation, the following assumptions are made for future Trading Days: \begin{itemize} \item $CC\_F\_D(f, d + 1) = CC\_F\_D(f, d)$ \item The Facility remains registered to the current Market Participant for the remainder of the Capacity Year. \end{itemize} \begin{dmath} \label{MAXPGR_P_CY} MAXPGR\_P\_CY(p, cy) = \displaystyle \sum_{d \in D\_CY(cy)} MAXPGR\_P\_D(p, d) \end{dmath} \begin{dmath} \label{MAXPGR_P_D} MAXPGR\_P\_D(p, d) = \sum_{f \in SF(p, d) \cup SSF(p, d) \cup NSF(p, d) \cup indSF(p, d) \cup indSSF(p, d) \cup indNSF(p, d)} MAXFR\_F\_D(f, d) \end{dmath} \begin{dmath} \label{MAXFR_F_CY} MAXFR\_F\_CY(f, cy) = \displaystyle \sum_{d \in D\_CY(cy)} MAXFR\_F\_D(f, d) \end{dmath} \begin{dmath} \label{MAXFR_F_D} MAXFR\_F\_D(f, d) = CC\_F\_D(f, d) \times RCP\_F\_D(f, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MAXPGR\_P\_CY(p, cy) & \$ & P & CY & Ch 11 & Maximum Participant Generation Refund for participant p in Capacity Year cy & (\ref{MAXPGR_P_CY})\\ \hline MAXPGR\_P\_D(p, d) & \$ & P & D & Ch 11 & Maximum Participant Generation Refund for participant p contributed by Trading Day d & (\ref{MAXPGR_P_D})\\ \hline MAXFR\_F\_CY(f, cy) & \$ & F & CY & Ch 11 & Maximum Facility Refund for Facility f in Capacity Year cy & (\ref{MAXFR_F_CY})\\ \hline MAXFR\_F\_D(f, d) & \$ & F & D & Ch 11 & Maximum Facility Refund for Facility f contributed by Trading Day d & (\ref{MAXFR_F_D})\\ \hline CC\_F\_D(f, d) & MW & F & D & Ch 11 & Capacity Credits associated with Facility f on Trading Day d & I\\ \hline RCP\_F\_D(f, d) & \$/MW & F & D & Ch 11 & Facility Daily Reserve Capacity Price for Facility f in Trading Day d & (\ref{RCP_F_D})\\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline NSF(d) & \{\} & G & D & Ch 11 & Set of Non-Scheduled Facilities in Trading Day d & (\ref{NSF}) \\ \hline CCF(d) & \{\} & G & D & Ch 11 & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline D\_CY(cy) & \{\} & G & CY & Ch 11 & Set of Trading Days in Capacity Year cy & I\\ \hline \end{longtable} \paragraph{Net STEM Refund} \begin{dmath} \label{NSR_P_I} NSR\_P\_I(p, i) = TIRRW\_P\_I(p, i) \times NSSF\_P\_I(p, i) \end{dmath} \begin{dmath} \label{NSSF_P_I} NSSF\_P\_I(p, i) = max(0, STEMREQ\_P\_I(p, i) - CAPASTEM\_P\_I(p, i) - RTCR\_P\_I(p, i)) \end{dmath} \begin{dmath} \label{RTCR_P_I} RTCR\_P\_I(p, i) = \displaystyle \sum_{f \in (SF(p, i) \cup SSF(p, i)) \cap COP(i)} RTCR\_F\_I(f, i) \end{dmath} \begin{dmath} \label{RTCR_F_I} RTCR\_F\_I(f, i) = CAFO\_F\_I(f, i) + NISCRQ\_F\_I(f, i) + ESRCSF\_F\_I(f, i) + RTMOSF\_F\_I(f, i) + max(0, NIMGRPPO\_F\_I(f, i) + ESRRPPO\_F\_I(f, i) - STEMCAPO\_F\_I(f, i)) \end{dmath} \begin{dmath} \label{STEMREQ_P_I} STEMREQ\_P\_I(p, i) = \frac{\displaystyle \sum_{di \in DI(i)}STEMREQ\_P\_DI(p, di)}{6} \end{dmath} \begin{dmath} \label{STEMREQ_P_DI} STEMREQ\_P\_DI(p, di) = \displaystyle \sum_{f \in (SF(di) \cup SSF(di)) \cap COP(di)} STEMFREQ\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{STEMFREQ_F_DI} STEMFREQ\_F\_DI(f, di) = STEMRCOQ\_F\_DI(f, di) - max(0, STEMCAFO\_F\_DI(f, di) - CAFO\_F\_DI(f, di) \end{dmath} \begin{dmath} \label{CAPASTEM_P_I} CAPASTEM\_P\_I(p, i) = \begin{dcases} STEMREQ\_P\_I(p, i) & \text{if $SSF\_G\_D(i)=0$} \\ & \text{or $STEMREQ\_P\_I(p, i) = 0$} \\ \frac{NCP\_P\_I(p, i) + STEMNSOQ\_P\_I(p, i) + STEMDQ\_P\_I(p, i)}{0.5h \times LF\_P\_I(p, i)} & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{STEMNSOQ_P_I} STEMNSOQ\_P\_I(p, i) = STEMOQ\_P\_I(p, i) - STEMSQ\_P\_I(p, i) \end{dmath} \begin{dmath} \label{LF_P_I} LF\_P\_I(p, i) = \frac{\displaystyle \sum_{di \in DI(i)}LF\_P\_DI(p, di)}{6} \end{dmath} \begin{dmath} \label{LF_P_DI} LF\_P\_DI(p, di) = \frac{\displaystyle \sum_{f \in (SF(p, di) \cup SSF(p, di)) \cap COP(di)}(LF\_F\_D(f, di) \times STEMRCOQ\_F\_DI(f, di))}{\displaystyle \sum_{f \in (SF(p, di) \cup SSF(p, di)) \cap COP(di)}STEMRCOQ\_F\_DI(f, di)} \end{dmath} \begin{dmath} \label{LF_F_D} LF\_F\_D(f, d) = TLF\_F\_D(f, d) \times DLF\_F\_D(f, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead NSR\_P\_I(p, i) & \$ & P & I & 4.26.3(b) & Net STEM Refund for participant p in Trading Interval i & (\ref{NSR_P_I})\\ \hline TIRRW\_P\_I(p, i) & \$/MW & P & I & 4.26.3(b)ii & Weighted average Trading Interval refund rate for participant p in Trading Interval i & (\ref{TIRRW_P_I})\\ \hline NSSF\_P\_I(p, i) & MW & P & I & 4.26.2AA & Net STEM Shortfall for participant p in Trading Interval i & (\ref{NSSF_P_I})\\ \hline STEMREQ\_P\_I(p, i) & MW & P & I & 4.26.2AB & STEM requirement for participant p in Trading Interval i & (\ref{STEMREQ_P_I})\\ \hline STEMREQ\_P\_DI(p, di) & MW & P & DI & 4.26.2AC & STEM requirement for participant p in Dispatch Interval di & (\ref{STEMREQ_P_DI})\\ \hline STEMFREQ\_F\_DI(f, di) & MW & F & DI & 4.26.2AD & STEM requirement for Facility f in Dispatch Interval di & (\ref{STEMFREQ_F_DI})\\ \hline CAPASTEM\_P\_I(p, i) & MW & P & I & 4.26.2AE & Capacity made available bilaterally and through STEM by participant p in Trading Interval i & (\ref{CAPASTEM_P_I})\\ \hline RTCR\_P\_I(p, i) & MW & P & I & 4.26.2AH & Capacity subject to Facility Reserve Capacity Deficit Refunds for participant p in Trading Interval i & (\ref{RTCR_P_I})\\ \hline RTCR\_F\_I(f, i) & MW & F & I & & Capacity subject to Facility Reserve Capacity Deficit Refunds for Facility f in Trading Interval i & (\ref{RTCR_F_I})\\ \hline CAFO\_F\_I(f, i) & MW & F & I & 3.21.7B & Capacity Adjusted Forced Outage Quantity for Facility f in Trading Interval i & I\\ \hline CAFO\_F\_DI(f, di) & MW & F & DI & 3.21.7C & Capacity Adjusted Forced Outage Quantity for Facility f in Dispatch Interval di & I\\ \hline NISCRQ\_F\_I(f, i) & MW & F & I & 4.26.1D & Not In-Service Capacity Refund Quantity for Facility f in Trading Interval i & (\ref{NISCRQ_F_I})\\ \hline ESRCSF\_F\_I(f, i) & MW & F & I & 4.26.1E & ESR Charge Shortfall for Facility f in Trading Interval i & (\ref{ESRCSF_F_I})\\ \hline RTMOSF\_F\_I(f, i) & MW & F & I & 4.26.1G & Real-Time Market Offer Shortfall for Facility f in Trading Interval i & (\ref{RTMOSF_F_I})\\ \hline NIMGRPPO\_F\_I(f, i) & MW & F & I & 4.26.1C & Refund Payable Planned Outage associated with Non-Intermittent Generating Systems for Facility f in Trading Interval i & (\ref{NIMGRPPO_F_I})\\ \hline ESRRPPO\_F\_I(f, i) & MW & F & I & 4.26.1CA & Refund Payable Planned Outage associated with an Electric Storage Resource for Facility f in Trading Interval i & (\ref{ESRRPPO_F_I})\\ \hline STEMCAPO\_F\_I(f, i) & MW & F & I & 4.26.2AH & Capacity Adjusted Planned Outage Quantity determined on the Scheduling Day for Facility f in Trading Interval i & I\\ \hline STEMCAFO\_F\_DI(f, di) & MW & F & DI & 4.26.2AD & Capacity Adjusted Forced Outage Quantity determined on the Scheduling Day for Facility f in Dispatch Interval di & I\\ \hline STEMRCOQ\_F\_DI(f, di) & MW & F & DI & Ch 11 & STEM Reserve Capacity Obligation Quantity at the time of the Bilateral Submission Cutoff for Facility f in Dispatch Interval di & I\\ \hline NCP\_P\_I(p, i) & MWh & P & I & 6.9.13 & Net Contract Position for participant p in Trading Interval i & (\ref{NCP_P_I})\\ \hline LF\_P\_I(p, i) & & P & I & 4.26.2A & Loss Factor for participant p in Trading Interval i & (\ref{LF_P_I})\\ \hline LF\_P\_DI(p, di) & & P & DI & 4.26.2AG & Loss Factor for participant p in Dispatch Interval di & (\ref{LF_P_DI})\\ \hline LF\_F\_D(f, d) & & F & D & Ch 11 & Loss Factor for Facility f for Trading Day d & (\ref{LF_F_D})\\ \hline TLF\_F\_D(f, d) & & F & D & Ch 11 & Transmission Loss Factor for Facility f for Trading Day d & I\\ \hline DLF\_F\_D(f, d) & & F & D & Ch 11 & Distribution Loss Factor for Facility f for Trading Day d & I\\ \hline STEMSQ\_P\_I(p, i) & MWh & P & I & 6.9.13(c) & Energy sold in STEM by participant p in Trading Interval i & (\ref{STEMSQ_P_I})\\ \hline STEMDQ\_P\_I(p, i) & MWh & P & I & 6.9.13(b) & Energy bought in STEM by participant p in Trading Interval i & (\ref{STEMDQ_P_I})\\ \hline STEMNSOQ\_P\_I(p, i) & MWh & P & I & & Energy offered (but not scheduled) in STEM by participant p in Trading Interval i & (\ref{STEMNSOQ_P_I})\\ \hline STEMOQ\_P\_I(p, i) & MWh & P & I & App 6 (e) & Energy offered in STEM by participant p in Trading Interval i & I\\ \hline SSF\_G\_D(d) & Flag & G & D & 6.21.1(a) & Flag that is 0 if STEM was suspended in Trading Day d, and 1 otherwise & I\\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline COP(d) & \{\} & G & D & Ch 11 & Set of Facilities that are in Commercial Operation in Trading Day d & I \\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline \end{longtable} \paragraph{DSP Capacity Shortfall Refund} \begin{dmath} \label{DSPCSR_F_I} DSPCSR\_F\_I(f, i) = \begin{dcases} TIRR\_F\_I(f, i) \times DSPSF\_F\_I(f, i) & \text{if $f \in REG\_F(i)$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{DSPSF_F_I} DSPSF\_F\_I(f, i) = max\bigg(0, min\bigg( estRCOQ\_F\_I(f, i), DIMW\_F\_I(f, i)\bigg) - max\bigg(0, RD\_F\_D(f, i) - \frac{DSPL\_F\_I(f, i)}{0.5h}\bigg)\bigg) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead DSPCSR\_F\_I(f, i) & \$ & F & I & 4.26.3A(b)i & DSP capacity shortfall refund for Facility f in Trading Interval i & (\ref{DSPCSR_F_I})\\ \hline TIRR\_F\_I(f, i) & \$/MW & F & I & 4.26.1(a), 4.28A.1A & Trading Interval Refund Rate for Facility f in Trading Interval i & (\ref{TIRR_F_I})\\ \hline DSPSF\_F\_I(f, i) & MW & F & I & 4.26.2D & DSP Capacity Shortfall for Facility f in Trading Interval i & (\ref{DSPSF_F_I})\\ \hline estRCOQ\_F\_I(f, i) & MW & F & I & Ch 11 & Reserve Capacity Obligation Quantity (including estimation) of Facility f in Trading Interval i & (\ref{estRCOQ_F_I})\\ \hline RD\_F\_D(f, d) & MW & F & D & 4.26.2CA & Relevant Demand of Facility f in Trading Day d & I\\ \hline DSPL\_F\_I(f, i) & MWh & F & I & 9.5.4 & Demand Side Programme Load for Facility f in Trading Interval i & (\ref{DSPL_F_I})\\ \hline DIMW\_F\_I(f, i) & MW & F & I & 4.26.2D(a) & The MW quantity by which Facility f was instructed by AEMO to curtail the absolute value of its Withdrawal in Trading Interval i & I\\ \hline DSP(d) & \{\} & G & D & Ch 11 & Set of Demand Side Programmes in Trading Day d & (\ref{SF}) \\ \hline \end{longtable} \paragraph{Facility Reserve Capacity Deficit Refund} \begin{dmath} \label{FRCDR_F_I} FRCDR\_F\_I(f, i) = min(RCD\_F\_I(f, i) \times TIRR\_F\_I(f, i), MAXFR\_F\_CY(f, i) - CFRCDR\_F\_I(f, i)) \end{dmath} \begin{dmath} \label{CFRCDR_F_I} CFRCDR\_F\_I(f, i) = CFRCDRstart\_F\_D(f, i) + \displaystyle \sum_{j \in PITD(i)} FRCDR\_F\_I(f, j) \end{dmath} \begin{dmath} \label{RCD_F_I} RCD\_F\_I(f, i) = \begin{dcases} CC\_F\_D(f, i) & \text{for $f \in \overline{REG\_F(i)} \cup (\overline{COP(i)}$} \\ & \text{$\cap (SF(i) \cup SSF(i) \cup NSF(i)))$} \\ min(CCIG\_F\_D(f, i), RLRCD\_F\_D(f, i)) + RTMRCD\_F\_I(f, i) & \text{for $f \in COP(i) \cap (SF(i) \cup SSF(i))$} \\ min(CC\_F\_D(f, i), RLRCD\_F\_D(f, i)) & \text{for $f \in COP(i) \cap NSF(i)$} \\ max(0, estRCOQ\_F\_I(f, i) - max(0, RD\_F\_D(f, i) - MINL\_F\_D(f, i))) & \text{for $f \in DSP(i)$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{RLRCD_F_D} RLRCD\_F\_D(f, i) = \\ max\bigg(0, min\bigg(REQLA\_F\_D(f, i) - \frac{MAX2\_F\_D(f, i)}{0.5h}, REQLA\_F\_D(f, i) - ESTSOC\_F\_D(f, i)\bigg)\bigg) \end{dmath} \begin{dmath} \label{RTMRCD_F_I} RTMRCD\_F\_I(f, i) = NIMGRPPO\_F\_I(f, i) + ESRRPPO\_F\_I(f, i) + min(estRCOQ\_F\_I(f, i), \\ CAFO\_F\_I(f, i) + NISCRQ\_F\_I(f, i) + ESRCSF\_F\_I(f, i) + RTMOSF\_F\_I(f, i)) \end{dmath} \begin{dmath} \label{NIMGRPPO_F_I} NIMGRPPO\_F\_I(f, i) = \displaystyle \sum_{scc \in NIMG(f,i)} NIMGRPPO\_SCC\_I(scc, i) \end{dmath} \begin{dmath} \label{ESRRPPO_F_I} ESRRPPO\_F\_I(f, i) = \displaystyle \sum_{scc \in ESR(f,i)} ESRRPPO\_SCC\_I(scc, i) \end{dmath} \begin{dmath} \label{NIMGRPPO_SCC_I} NIMGRPPO\_SCC\_I(scc, i) = \begin{dcases} NIMGPO\_SCC\_I(scc, i) & \text{for $REPOC1000\_SCC\_D(scc, i) \geq 8400$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{ESRRPPO_SCC_I} ESRRPPO\_SCC\_I(scc, i) = \begin{dcases} ESRPO\_SCC\_I(scc, i) & \text{for $REPOC1000\_SCC\_D(scc, i) \geq 1400$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{REPOC1000_SCC_D} REPOC1000\_SCC\_D(scc, d) = \displaystyle \sum_{i \in PD1000(d)} REPOC\_SCC\_D(scc, i) \end{dmath} \begin{dmath} \label{NISCRQ_F_I} NISCRQ\_F\_I(f, i) = \frac{\displaystyle \sum_{di \in DI(i)} NISCRQ\_F\_DI(f, di)}{6} \end{dmath} \begin{dmath} \label{NISCRQ_F_DI} NISCRQ\_F\_DI(f, di) = \begin{dcases} 0 & \text{if $RTMSuspFlag\_G\_DI(di) = 1$} \\ min(estRCOQ\_F\_DI(f, di) - CAFO\_F\_DI(f, di), NISCap\_F\_DI(f, di)) & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{dmath} \label{ESRCSF_F_I} ESRCSF\_F\_I(f, i) = \frac{\displaystyle \sum_{di \in DI(i)} ESRCSF\_F\_DI(f, di)}{6} \end{dmath} \begin{dmath} \label{ESRCSF_F_DI} ESRCSF\_F\_DI(f, di) = \displaystyle \sum_{scc \in ESR(f, di)} CSF\_SCC\_DI(scc, di) \end{dmath} \begin{dmath} \label{CSF_SCC_DI} CSF\_SCC\_DI(scc, di) = \begin{cases} 0 & \text{if $RTMSuspFlag\_G\_DI(di) = 1$} \\ max\bigg(0, estRCOQ\_SCC\_DI(scc, di) - CAFO\_SCC\_DI(scc, di) \\ - \frac{max(0, ChargeLevel\_SCC\_DI(scc, di) - MinChargeLevel\_SCC\_D(scc, di))}{5/60 h}\bigg) & \text{otherwise} \\ \end{cases} \end{dmath} \begin{dmath} \label{RTMOSF_F_I} RTMOSF\_F\_I(f, i) = max\bigg(0, \frac{\displaystyle \sum_{di \in DI(i)}RTMOSF\_F\_DI(f, di)}{6} - CAFO\_F\_I(f, di) - NISCRQ\_F\_I(f, i) - ESRCSF\_F\_I(f, i)\bigg) \end{dmath} \begin{dmath} \label{RTMOSF_F_DI} RTMOSF\_F\_DI(f, di) = \begin{dcases} 0 & \text{if $RTMSuspFlag\_G\_DI(di) = 1$} \\ max(0, estRCOQ\_F\_DI(f, di) - OfferAvail\_F\_DI(f, di)) & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{dmath} \label{MINL_F_D} MINL\_F\_D(f, d) = \displaystyle \sum_{n \in DSPNMI(f, d)} MINL\_N\_D(n, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead FRCDR\_F\_I(f, i) & \$ & F & I & 4.26.1A & Facility Reserve Capacity Deficit Refund for Facility f in Trading Interval i & (\ref{FRCDR_F_I})\\ \hline CFRCDR\_F\_I(f, i) & \$ & F & I & 4.26.1A(b) & Sum of Facility Reserve Capacity Deficit Refunds for Facility f in Trading Intervals in the same Capacity Year as, but prior to, Trading Interval i & (\ref{CFRCDR_F_I})\\ \hline RCD\_F\_I(f, i) & MW & F & I & 4.26.1A & Reserve Capacity Deficit for Facility f in Trading Interval i & (\ref{RCD_F_I})\\ \hline RLRCD\_F\_D(f, d) & MW & F & D & & Reserve Capacity Deficit (related to Required Level) for Facility f for Trading Day d & (\ref{RLRCD_F_D})\\ \hline RTMRCD\_F\_I(f, i) & MW & F & I & 4.26.1B & Real-Time Market Reserve Capacity Deficit for Facility f in Trading Interval i & (\ref{RTMRCD_F_I})\\ \hline NIMGRPPO\_F\_I(f, i) & MW & F & I & 4.26.1B & Total Refund Payable Planned Outage Quantity for all Separately Certified Components which are Non-Intermittent Generating Systems for Facility f in Trading Interval i & (\ref{NIMGRPPO_F_I})\\ \hline ESRRPPO\_F\_I(f, i) & MW & F & I & 4.26.1B & Total Refund Payable Planned Outage Quantity for all Separately Certified Components which are Electric Storage Resources for Facility f in Trading Interval i & (\ref{ESRRPPO_F_I})\\ \hline NIMGRPPO\_SCC\_I(scc, i) & MW & SCC & I & 4.26.1C & Refund Payable Planned Outage Quantity for Separately Certified Component scc which is a Non-Intermittent Generating System in Trading Interval i & (\ref{NIMGRPPO_SCC_I})\\ \hline ESRRPPO\_SCC\_I(scc, i) & MW & SCC & I & 4.26.1CA & Refund Payable Planned Outage Quantity for Separately Certified Component scc which is an Electric Storage Resource in Trading Interval i & (\ref{ESRRPPO_SCC_I})\\ \hline REPOC1000\_SCC\_D(scc, d) & & SCC & D & 4.26.1C, 4.26.1CA & Refund Exempt Planned Outage Count for Separately Certified Component scc over the preceding 1000 Trading Days prior to (and excluding) Trading Day d & (\ref{REPOC1000_SCC_D})\\ \hline NISCRQ\_F\_I(f, i) & MW & F & I & 4.26.1D & Not In-Service Capacity Refund Quantity for Facility f in Trading Interval i & (\ref{NISCRQ_F_I})\\ \hline NISCRQ\_F\_DI(f, di) & MW & F & DI & & Not In-Service Capacity Refund Quantity for Facility f in Dispatch Interval di & (\ref{NISCRQ_F_DI})\\ \hline ESRCSF\_F\_I(f, i) & MW & F & I & 4.26.1E & ESR Charge Shortfall for Facility f in Trading Interval i & (\ref{ESRCSF_F_I})\\ \hline ESRCSF\_F\_DI(f, di) & MW & F & DI & 4.26.1E & ESR Charge Shortfall for Facility f in Dispatch Interval di & (\ref{ESRCSF_F_DI})\\ \hline RTMOSF\_F\_I(f, i) & MW & F & I & 4.26.1G & Real-Time Market Offer Shortfall for Facility f in Trading Interval i & (\ref{RTMOSF_F_I})\\ \hline RTMOSF\_F\_DI(f, di) & MW & F & DI & 4.26.1H & Shortfall in Reserve Capacity offered into the Real-Time Market for Facility f in Dispatch Interval di & (\ref{RTMOSF_F_DI})\\ \hline MINL\_F\_D(f, d) & MW & F & D & 4.26.1(e)iii.4 & Minimum load of Facility f for Trading Day d & (\ref{MINL_F_D})\\ \hline CAFO\_F\_I(f, i) & MW & F & I & 3.21.7B & Capacity Adjusted Forced Outage Quantity for Facility f in Trading Interval i & I\\ \hline CAFO\_F\_DI(f, di) & MW & F & DI & 3.21.7C & Capacity Adjusted Forced Outage Quantity for Facility f in Dispatch Interval di & I\\ \hline CAFO\_SCC\_DI(scc, di) & MW & SCC & DI & 3.21.7 & Capacity Adjusted Forced Outage Quantity for Separately Certified Component scc in Dispatch Interval di & I\\ \hline CC\_F\_D(f, d) & MW & F & D & Ch 11 & Capacity Credits associated with Facility f on Trading Day d & I\\ \hline CCIG\_F\_D(f, d) & MW & F & D & & Capacity Credits associated with an Intermittent Generating System for Facility f on Trading Day d & I\\ \hline CFRCDRstart\_F\_D(f, d) & \$ & F & D & 4.26.1A(b) & Sum of Facility Reserve Capacity Deficit Refunds for Facility f in the same Capacity Year as, but prior to, Trading Day d & I\\ \hline ChargeLevel\_SCC\_DI & MWh & SCC & DI & 4.26.1F(c) & Charge Level (or alternative estimate from AEMO where the Charge Level is not available) of Separately Certified Component scc at the start of Dispatch Interval di & I\\ \hline COP(d) & \{\} & G & D & Ch 11 & Set of Facilities that are in Commercial Operation in Trading Day d & I \\ \hline CSF\_SCC\_DI(scc, di) & MW & SCC & DI & 4.26.1F & Capacity shortfall for Separately Certified Component scc in Dispatch Interval di & (\ref{CSF_SCC_DI})\\ \hline DI(i) & \{\} & G & I & Ch 11 & Set of Dispatch Intervals in Trading Interval i & I\\ \hline DSP(d) & \{\} & G & D & Ch 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline DSPNMI(d) & \{\} & G & D & & Set of connection points which comprise a Demand Side Programme on Trading Day d & I\\ \hline ESR(d) & \{\} & G & D & & Set of Electric Storage Resources in Trading Day d & I\\ \hline ESRPO\_SCC\_I(scc, i) & MW & SCC & I & 4.26.1CA & Capacity Adjusted Planned Outage Quantity for Separately Certified Component scc which is an Electric Storage Resource in Trading Interval i & I\\ \hline ESTSOC\_F\_D(f, d) & MW & F & D & 4.13.10C & Independent expert's estimate of the sent out capacity of Facility f applicable for Trading Day d & I\\ \hline MAX2\_F\_D(f, d) & MWh & F & D & 4.26.1A (a)ii.3.iii & 2nd highest Sent Out Metered Schedule of Facility f up to and including Trading Day d & (\ref{MAX2_F_D})\\ \hline MAXFR\_F\_CY(f, cy) & \$ & F & CY & Ch 11 & Maximum Facility Refund for Facility f in Capacity Year cy & (\ref{MAXFR_F_CY})\\ \hline MinChargeLevel\_SCC\_D & MWh & SCC & D & 4.26.1F(d) & Minimum Charge Level capability of Separately Certified Component scc in Trading Day d & I\\ \hline MINL\_N\_D(n, d) & MW & N & D & 2.29.5B(c) & Minimum load of NMI n for Trading Day d & I\\ \hline NIMGPO\_SCC\_I(scc, i) & MW & SCC & I & 4.26.1C & Capacity Adjusted Planned Outage Quantity for Separately Certified Component scc which is a Non-Intermittent Generating System in Trading Interval i & I\\ \hline NISCap\_F\_DI(f, di) & MW & F & DI & 7.13A.1 & Not In-Service Capacity quantity for Facility f in Dispatch Interval di & I\\ \hline NSF(d) & \{\} & G & D & Ch 11 & Set of Non-Scheduled Facilities in Trading Day d & (\ref{NSF}) \\ \hline OfferAvail\_F\_DI(f, di) & MW & F & DI & 4.26.1H(b) & MW quantity included in Real-Time Market Offers for energy for Facility f in Dispatch Interval di (whether offered as Available Capacity or In-Service Capacity) that were used to calculate Dispatch Instructions and Market Clearing Prices & I\\ \hline PITD(i) & \{\} & G & I & & Set of Trading Intervals in the same Trading Day as, but prior to, Trading Interval i & I\\ \hline PD1000(d) & \{\} & G & D & & Set of 1000 Trading Days preceding (and excluding) Trading Day d & I\\ \hline estRCOQ\_F\_I(f, i) & MW & F & I & Ch 11 & Reserve Capacity Obligation Quantity (including estimation) of Facility f in Trading Interval i & (\ref{estRCOQ_F_I})\\ \hline estRCOQ\_F\_DI(f, di) & MW & F & DI & 4.26.1H(a) & Reserve Capacity Obligation Quantity (including estimation) of Facility f in Dispatch Interval di & (\ref{estRCOQ_F_DI})\\ \hline estRCOQ\_SCC\_DI(scc, di) & MW & SCC & DI & & Reserve Capacity Obligation Quantity (including estimation) for Separately Certified Component scc in Dispatch Interval di & (\ref{estRCOQ_SCC_DI})\\ \hline RD\_F\_D(f, d) & MW & F & D & 4.26.2CA & Relevant Demand of Facility f in Trading Day d & I\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline REPOC\_SCC\_D(scc, d) & & F & D & Ch 11 & Refund Exempt Planned Outage Count for Separately Certified Component scc on Trading Day d & I\\ \hline REQLA\_F\_D(f, d) & MW & F & D & & Required Level adjusted to current level of Capacity Credits for Facility f for Trading Day d & I\\ \hline RTMSuspFlag\_G\_DI(di) & Flag & G & DI & 7.11D.6 & RTM Suspension Flag that is 1 if the Real-Time Market was suspended in Dispatch Interval di, and 0 otherwise & I\\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline TIRR\_F\_I(f, i) & \$/MW & F & I & 4.26.1(a), 4.28A.1A & Trading Interval Refund Rate for Facility f in Trading Interval i & (\ref{TIRR_F_I})\\ \hline \end{longtable} \paragraph{MAX2\_F\_D} \begin{dmath} \label{MAX2_F_D} MAX2\_F\_D(f, d) = \text{2nd highest value of }\\ \text{$\{MAX1CD\_F\_D(f, j) : n < j \leq d \} \ \cup$} \\ \text{$\{MAX2CD\_F\_D(f, j) : n 41 \degree C$}\\ max\bigg(0, \frac{-SOMSIL\_F\_I(f, i)}{0.5h} - 0.03 \times NC\_F\_D(f, i)\bigg) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{IMLEPSPOFlag_F_I} IMLEPSPOFlag\_F\_I(f, i) = \begin{dcases} 1 & \text{if $\exists di \in DI(i) : IMLEPSPOFlag\_F\_DI(f, di) = 1$}\\ 0 & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{IMLEPSFOFlag_F_I} IMLEPSFOFlag\_F\_I(f, i) = \begin{dcases} 1 & \text{if $\exists di \in DI(i) : IMLEPSFOFlag\_F\_DI(f, di) = 1$}\\ 0 & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead IMLR\_F\_I(f, i) & \$ & F & I & & Intermittent Load Refunds for Facility f in Trading Interval i & (\ref{IMLR_F_I})\\ \hline IMLSF\_F\_I(f, i) & MW & F & I & 4.28A.1(c) & Intermittent Load capacity shortfall for Facility f in Trading Interval i & (\ref{IMLSF_F_I})\\ \hline TIRR\_F\_I(f, i) & \$/MW & F & I & 4.26.1(a), 4.28A.1A & Trading Interval Refund Rate for Facility f in Trading Interval i & (\ref{TIRR_F_I})\\ \hline SOMSIL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the intermittent load associated with Facility f in Trading Interval i & (\ref{SOMSIL_F_I})\\ \hline IMLEPSPOFlag\_F\_I(f, i) & Flag & F & I & 4.28A.1(c) & Flag that is 1 when the Energy Producing System associated with Facility f is subject to a Planned Outage that would affect the energy production capability of the Energy Producing System in Trading Interval i, and 0 otherwise & (\ref{IMLEPSPOFlag_F_I})\\ \hline IMLEPSPOFlag\_F\_DI(f, di) & Flag & F & DI & 4.28A.1(c) & Flag that is 1 when the Energy Producing System associated with Facility f is subject to a Planned Outage that would affect the energy production capability of the Energy Producing System in Dispatch Interval di, and 0 otherwise & I\\ \hline IMLEPSFOFlag\_F\_I(f, i) & Flag & F & I & 4.28A.1(c) & Flag that is 1 when the Energy Producing System associated with Facility f is subject to a Forced Outage that would affect the energy capability of the Energy Producing System in Trading Interval i, and 0 otherwise & (\ref{IMLEPSFOFlag_F_I})\\ \hline IMLEPSFOFlag\_F\_DI(f, di) & Flag & F & DI & 4.28A.1(c) & Flag that is 1 when the Energy Producing System associated with Facility f is subject to a Forced Outage that would affect the energy capability of the Energy Producing System in Dispatch Interval di, and 0 otherwise & I\\ \hline estMAXTEMP\_F\_D(f, d) & \degree C & F & D & 2.30B.3(b)ii & Daily maximum temperature (including estimation) of the Energy Producing System associated with Facility f for Trading Day d & (\ref{estMAXTEMP_F_D})\\ \hline NC\_F\_D(f, d) & MW & F & D & 4.28.8(c) & Nominated capacity for Facility f for Trading Day d & I\\ \hline ACR\_F\_D(f, d) & MW & F & D & 2.30B.3(b)i & Anticipated capacity reduction at 45\degree C associated with Facility f for Trading Day d & I\\ \hline \end{longtable} \paragraph{Refund Rates} \begin{dmath} \label{TIRRW_P_I} TIRRW\_P\_I(p, i) = \begin{dcases} 0 & \text{for $\displaystyle \sum_{f \in REG\_F(p, i) \cap \overline{DSP(p, i)}} CC\_F\_D(f, i) = 0$} \\ \frac{\displaystyle \sum_{f \in REG\_F(p, i) \cap \overline{DSP(p, i)}}TIRR\_F\_I(f, i) \times CC\_F\_D(f, i)}{\displaystyle \sum_{f \in REG\_F(p, i) \cap \overline{DSP(p, i)}} CC\_F\_D(f, i)} & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{dmath} \label{TIRR_F_I} TIRR\_F\_I(f, i) = RF\_F\_I(f, i) \times Y\_F\_I(f, i) \end{dmath} \begin{dmath} \label{RF_F_I} RF\_F\_I(f, i) = min(6, max(RFdyn\_G\_I(i), RFfloor\_F\_I(f, i))) \end{dmath} \begin{dmath} \label{RFdyn_G_I} RFdyn\_G\_I(i) = 11.75 - \frac{5.75}{750MW} \times SPARE\_G\_I(i) \end{dmath} \begin{dmath} \label{SPARE_G_I} SPARE\_G\_I(i) = \displaystyle \sum_{f \in CCF(i) \cap REG\_F(i)} SPARE\_F\_I(f, i) \end{dmath} \begin{dmath} \label{SPARE_F_I} SPARE\_F\_I(f, i) = \begin{dcases} max \left(0, estRCOQ\_F\_I(f, i) - CAFO\_F\_I(f, i) - \frac{SOMS\_F\_I(f, i)}{0.5h}\right) & \text{for $f \in SF(i) \cup SSF(i)$} \\ max \left(0, min \left(estRCOQ\_F\_I(f, i), \frac{DSPL\_F\_I(f, i)}{0.5h} - MINL\_F\_D(f, i)\right)\right) & \text{for $f \in DSP(i)$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{dmath} \label{RFfloor_F_I} RFfloor\_F\_I(f, i) = \begin{dcases} 1 & \text{for $f \in DSP(i) \cup \overline{COP(i)} \cup \overline{REG\_F(i)}$} \\ 1 - 0.75 \times DISP\_F\_I(f, i) & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{dmath} \label{DISP_F_I} DISP\_F\_I(f, i) = \begin{dcases} 0 & \text{for div by 0} \\ 1 - \frac{\displaystyle \sum_{j \in PI4320a(i)} CAFO\_F\_I(f, j) + \sum_{d \in PD89(i)} CAFO\_F\_D(f, d) + \sum_{j \in PI4320b(i)} CAFO\_F\_I(f, j)}{\displaystyle \sum_{j \in PI4320a(i)} CC\_F\_D(f, j) + 48 \times \sum_{d \in PD89(i)} CC\_F\_D(f, d) + \sum_{j \in PI4320b(i)} CC\_F\_D(f, j)} & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{CAFO_F_D} CAFO\_F\_D(f, d) = \displaystyle \sum_{i \in I(d)} CAFO\_F\_I(f, i) \end{dmath} \begin{dmath} \label{Y_F_I} Y\_F\_I(f, i) = \begin{dcases} \frac{CCESR\_F\_I(f, i)}{CC\_F\_D(f, i)} \times \frac{RCP\_F\_D(f, i)}{8}& \\ \ \ \ \ + \frac{CC\_F\_D(f, i) - CCESR\_F\_I(f, i)}{CC\_F\_D(f, i)} \times RCP\_F\_I(f, i) & \text{for $f \in COP(i) \cap (SF(i) \cup SSF(i))$} \\ \frac{RCP\_F\_M(f, i) \times 12}{400} & \text{for $f \in DSP(i)$} \\ RCP\_G\_I(i) & \text{for $f \in IML(i)$} \\ RCP\_F\_I(f, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{CCESR_F_I} CCESR\_F\_I(f, i) = \begin{dcases} CCESR\_F\_D(i) & \text{for $i \in ESROI(i)$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{RCP_G_I} RCP\_G\_I(i) = \frac{RCP\_G\_M(i)}{TITM\_G\_M(i)} \end{dmath} \begin{dmath} \label{RCP_G_M} RCP\_G\_M(m) = \frac{RCP\_G\_CY(m)}{12} \end{dmath} \begin{dmath} \label{RCP_F_I} RCP\_F\_I(f, i) = \frac{RCP\_F\_M(f, m)}{TITM\_G\_M(i)} \end{dmath} \begin{dmath} \label{RCP_F_D} RCP\_F\_D(f, d) = \frac{RCP\_F\_M(f, d)}{TDTM\_G\_M(d)} \end{dmath} \begin{dmath} \label{RCP_F_M} RCP\_F\_M(f, m) = \frac{RCP\_F\_CY(f, m)}{12} \end{dmath} \begin{dmath} \label{TITM_G_M} TITM\_G\_M(m) = 48 \times TDTM\_G\_M(m) \end{dmath} \begin{dmath} \label{TDTM_G_M} TDTM\_G\_M(m) = \begin{dcases} 28 & \text{for $m$ = February in a non-leap year} \\ 29 & \text{for $m$ = February in a leap year} \\ 30 & \text{for $m \in \{$ April, June, September, November $\}$} \\ 31 & \text{for $m \in \{$ January, March, May, July, August, October, December $\}$} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead TIRRW\_P\_I(p, i) & \$/MW & P & I & 4.26.3(b)ii & Weighted average Trading Interval refund rate for participant p in Trading Interval i & (\ref{TIRRW_P_I})\\ \hline TIRR\_F\_I(f, i) & \$/MW & F & I & 4.26.1(a), 4.28A.1A & Trading Interval Refund Rate for Facility f in Trading Interval i & (\ref{TIRR_F_I})\\ \hline RF\_F\_I(f, i) & & F & I & 4.26.1(c), 4.28A.1A(b) & Refund factor for Facility f in Trading Interval i & (\ref{RF_F_I})\\ \hline RFdyn\_G\_I(i) & & G & I & 4.26.1(d) & Dynamic refund factor in Trading Interval i & (\ref{RFdyn_G_I})\\ \hline SPARE\_G\_I(i) & MW & G & I & 4.26.1(d) & Available capacity (related to Capacity Credits) which is not dispatched in Trading Interval i & (\ref{SPARE_G_I})\\ \hline SPARE\_F\_I(f, i) & MW & F & I & 4.26.1(e) & Available capacity (related to Capacity Credits) which is not dispatched for Facility f in Trading Interval i & (\ref{SPARE_F_I})\\ \hline RFfloor\_F\_I(f, i) & & F & I & 4.26.1(f), 4.26.1(g) & Minimum refund factor for Facility f in Trading Interval i & (\ref{RFfloor_F_I})\\ \hline Y\_F\_I(f, i) & \$/MW & F & I & 4.26.1(b), 4.28A.1A(c) & Per Interval Reserve Capacity Price for Facility f in Trading Interval i & (\ref{Y_F_I})\\ \hline RCP\_G\_I(i) & \$/MW & G & I & 4.28A.1A(c) & Reserve Capacity Price in Trading Interval i & (\ref{RCP_G_I})\\ \hline RCP\_G\_M(m) & \$/MW & G & M & Ch 11 & Monthly Reserve Capacity Price for Trading Month m & (\ref{RCP_G_M})\\ \hline RCP\_G\_CY(cy) & \$/MW & G & CY & Ch 11 & Reserve Capacity Price in Capacity Year cy & I\\ \hline RCP\_F\_I(f, i) & \$/MW & F & I & 4.26.1(b) & Reserve Capacity Price for Facility f in Trading Interval i & (\ref{RCP_F_I})\\ \hline RCP\_F\_D(f, d) & \$/MW & F & D & Ch 11 & Facility Daily Reserve Capacity Price for Facility f in Trading Day d & (\ref{RCP_F_D})\\ \hline RCP\_F\_M(f, m) & \$/MW & F & M & Ch 11 & Facility Monthly Reserve Capacity Price for Facility f in Trading Month m & (\ref{RCP_F_M})\\ \hline RCP\_F\_CY(f, cy) & \$/MW & F & CY & Ch 11 & Reserve Capacity Price for Facility f in Capacity Year cy & I\\ \hline CC\_F\_D(f, d) & MW & F & D & Ch 11 & Capacity Credits associated with Facility f on Trading Day d & I\\ \hline CCESR\_F\_I(f, i) & MW & F & I & 4.26.1(b)iii & Capacity Credits held by Facility f associated with an Electric Storage Resource in Trading Interval i & (\ref{CCESR_F_I})\\ \hline CCESR\_F\_D(f, d) & MW & F & D & Ch 11 & Capacity Credits held by Facility f associated with an Electric Storage Resource on Trading Day d & I\\ \hline SOMS\_F\_I(f, i) & MWh & F & I & Ch 11 & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline CAFO\_F\_I(f, i) & MW & F & I & 3.21.7B & Capacity Adjusted Forced Outage Quantity for Facility f in Trading Interval i & I\\ \hline CAFO\_F\_D(f, d) & MW & F & D & 3.21.7B & Sum of Capacity Adjusted Forced Outage Quantity for Facility f in Trading Day d & (\ref{CAFO_F_D})\\ \hline estRCOQ\_F\_I(f, i) & MW & F & I & Ch 11 & Reserve Capacity Obligation Quantity (including estimation) of Facility f in Trading Interval i & (\ref{estRCOQ_F_I})\\ \hline DSPL\_F\_I(f, i) & MWh & F & I & 9.5.4 & Demand Side Programme Load for Facility f in Trading Interval i & (\ref{DSPL_F_I})\\ \hline MINL\_F\_D(f, d) & MW & F & D & 4.26.1(e)iii.4 & Minimum load of Facility f for Trading Day d & (\ref{MINL_F_D})\\ \hline DISP\_F\_I(f, i) & & F & I & 4.26.1(f)i & Portion of capacity which is not subject to a Forced Outage for Facility f over the previous 4320 Trading Intervals up to and including Trading Interval i & (\ref{DISP_F_I})\\ \hline TITM\_G\_M(m) & & G & M & Ch 11 & Number of Trading Intervals in Trading Month m & (\ref{TITM_G_M})\\ \hline TDTM\_G\_M(m) & & G & M & Ch 11 & Number of Trading Days in Trading Month m & (\ref{TDTM_G_M})\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline SF(d) & \{\} & G & D & Ch 11 & Set of Scheduled Facilities in Trading Day d & (\ref{SF}) \\ \hline SSF(d) & \{\} & G & D & Ch 11 & Set of Semi-Scheduled Facilities in Trading Day d & (\ref{SSF}) \\ \hline DSP(d) & \{\} & G & D & Ch 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline COP(d) & \{\} & G & D & Ch 11 & Set of Facilities that are in Commercial Operation in Trading Day d & I \\ \hline CCF(d) & \{\} & G & D & Ch 11 & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline ESROI(d) & \{\} & G & D & Ch 11 & Set of Electric Storage Resource Obligation Intervals applicable on Trading Day d & I \\ \hline PI4320a(i) & \{\} & G & I & & Set of Trading Intervals within the 90th Trading Day prior to Trading Interval i's Trading Day that form part of the 4320 Trading Intervals prior to and including Trading Interval i & I\\ \hline PI4320b(i) & \{\} & G & I & & Set of Trading Intervals within Trading Interval i's Trading Day that form part of the 4320 Trading Intervals prior to and including Trading Interval i & I\\ \hline PD89(d) & \{\} & G & D & & Set of 89 Trading Days prior to Trading Day d & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsubsection{Intermittent Load Refunds} \begin{dmath} \label{IMLR_P_D} IMLR\_P\_D(p, d) = \displaystyle \sum_{f \in IML(p, d) \cap LegacyIML(p, d)} IMLR\_F\_D(f, d) \end{dmath} \begin{dmath} \label{IMLR_F_D} IMLR\_F\_D(f, d) = \displaystyle \sum_{i \in I(d)} IMLR\_F\_I(f, i) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead IMLR\_P\_D(p, d) & \$ & P & D & 4.29.3(dA) & Intermittent Load Refunds for participant p in Trading Day d & (\ref{IMLR_P_D})\\ \hline IMLR\_F\_D(f, d) & \$ & F & D & 4.28A.1 & Intermittent Load Refunds for Facility f in Trading Day d & (\ref{IMLR_F_D})\\ \hline IMLR\_F\_I(f, i) & \$ & F & I & & Intermittent Load Refunds for Facility f in Trading Interval i & (\ref{IMLR_F_I})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline LegacyIML(d) & \{\} & G & D & 1.48.2 & Set of Intermittent Loads that were treated by AEMO as an Intermittent Load on the day before New WEM Commencement Day, and continue to retain this status on Trading Day d & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \newpage \subsection{Market Participant Fees} Fees are split into the following parts: \begin{itemize} \item Market Fees \item Regulator Fees \item Coordinator Fees \end{itemize} The corresponding payment made to AEMO, the ERA and the Coordinator are included in a separate chapter titled Service Fees. These equations are based on the equations stated in MR 9.12. \begin{dmath} \label{MPFSA_P_D} MPFSA\_P\_D(p, d) = -(MPMFSA\_P\_D(p, d) + MPRFSA\_P\_D(p, d) + MPCFSA\_P\_D(p, d)) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MPFSA\_P\_D(p, d) & \$ & P & D & 9.12.2 & Market Participant Fee Settlement Amount charged to participant p for Trading Day d & (\ref{MPFSA_P_D})\\ \hline MPMFSA\_P\_D(p, d) & \$ & P & D & 9.12.3 & Market Participant Market Fees settlement amount charged to participant p for Trading Day d & (\ref{MPMFSA_P_D})\\ \hline MPRFSA\_P\_D(p, d) & \$ & P & D & 9.12.4 & Market Participant Regulator Fees settlement amount charged to participant p for Trading Day d & (\ref{MPRFSA_P_D})\\ \hline MPCFSA\_P\_D(p, d) & \$ & P & D & 9.12.4A & Market Participant Coordinator Fees settlement amount charged to participant p for Trading Day d & (\ref{MPCFSA_P_D})\\ \hline \end{longtable} \subsubsection{Market Fees} \begin{dmath} \label{MPMFSA_P_D} MPMFSA\_P\_D(p, d) = MFRATE\_G\_FY(d) \times PC\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MPMFSA\_P\_D(p, d) & \$ & P & D & 9.12.3 & Market Participant Market Fees settlement amount charged to participant p for Trading Day d & (\ref{MPMFSA_P_D})\\ \hline PC\_P\_D(p, d) & MWh & P & D & 9.12.5 & Participant Contribution for participant p in Trading Day d & (\ref{PC_P_D})\\ \hline MFRATE\_G\_FY(fy) & \$/MWh & G & FY & 2.24.2 & Market Fee rate applicable in Financial Year fy & I\\ \hline \end{longtable} \subsubsection{Participant Contribution} \begin{dmath} \label{PC_P_D} PC\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} PC\_P\_I(p, i) \end{dmath} \begin{dmath} \label{PC_P_I} PC\_P\_I(p, i) = ABSNDL\_P\_I(p, i) + \displaystyle \sum_{f \in REG\_F(p, i)} \abs{MS\_F\_I(f, i)} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead PC\_P\_D(p, d) & MWh & P & D & 9.12.5 & Participant Contribution for participant p in Trading Day d & (\ref{PC_P_D})\\ \hline PC\_P\_I(p, i) & MWh & P & I & 9.12.5 & Participant Contribution for participant p in Trading Interval i & (\ref{PC_P_I})\\ \hline ABSNDL\_P\_I(p, i) & MWh & P & I & 9.12.5, 9.10.38 & Sum of the absolute value of Metered Schedules for all Non-Dispatchable Loads for participant p in Trading Interval i & (\ref{ABSNDL_P_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.5.2, 2.30B.10, 2.30B.11 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline REG\_F(d) & \{\} & G & D & Ch 11 & Set of Registered Facilities in Trading Day d & (\ref{REG_F}) \\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsubsection{Regulator Fees} \begin{dmath} \label{MPRFSA_P_D} MPRFSA\_P\_D(p, d) = RFRATE\_G\_FY(d) \times PC\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MPRFSA\_P\_D(p, d) & \$ & P & D & 9.12.4 & Market Participant Regulator Fees settlement amount charged to participant p for Trading Day d & (\ref{MPRFSA_P_D})\\ \hline PC\_P\_D(p, d) & MWh & P & D & 9.12.5 & Participant Contribution for participant p in Trading Day d & (\ref{PC_P_D})\\ \hline RFRATE\_G\_FY(fy) & \$/MWh & G & FY & 2.24.2 & Regulator Fee rate applicable in Financial Year fy & I\\ \hline \end{longtable} \subsubsection{Coordinator Fees} \begin{dmath} \label{MPCFSA_P_D} MPCFSA\_P\_D(p, d) = CFRATE\_G\_FY(d) \times PC\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead MPCFSA\_P\_D(p, d) & \$ & P & D & 9.12.4A & Market Participant Coordinator Fees settlement amount charged to participant p for Trading Day d & (\ref{MPCFSA_P_D})\\ \hline PC\_P\_D(p, d) & MWh & P & D & 9.12.5 & Participant Contribution for participant p in Trading Day d & (\ref{PC_P_D})\\ \hline CFRATE\_G\_FY(fy) & \$/MWh & G & FY & 2.24.2 & Coordinator Fee rate applicable in Financial Year fy & I\\ \hline \end{longtable} \subsection{Service Fees} Fees are split into the following parts: \begin{itemize} \item Market Fees \item Regulator Fees \item Coordinator Fees \end{itemize} The corresponding charges to Market Participants are included in a separate section titled Market Participant Fees. These equations are based on the equations stated in MR 9.13. \subsubsection{Market Fee Payments} \begin{dmath} \label{SFMFSA_P_D} SFMFSA\_P\_D(p, d) = \begin{dcases} \displaystyle \sum_{p \in P(d)} MPMFSA\_P\_D(p, d) & \text{for $p \in AEMO(i)$} \\ 0 & \text{for $p \notin AEMO(i)$} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead SFMFSA\_P\_D(p, d) & \$ & P & D & 9.13.2 & Service Fee Settlement Amount paid to AEMO for Trading Day d & (\ref{SFMFSA_P_D})\\ \hline MPMFSA\_P\_D(p, d) & \$ & P & D & 9.12.3 & Market Participant Market Fees settlement amount charged to participant p for Trading Day d & (\ref{MPMFSA_P_D})\\ \hline AEMO(d) & \{\} & G & D & Ch 11 & Set containing the AEMO & (\ref{AEMO})\\ \hline P(d) & \{\} & G & D & Ch 11 & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline \end{longtable} \subsubsection{Regulator Fee Payments} \begin{dmath} \label{SFRFSA_P_D} SFRFSA\_P\_D(p, d) = \begin{dcases} \displaystyle \sum_{p \in P(d)} MPRFSA\_P\_D(p, d) & \text{for $p \in ERA(i)$} \\ 0 & \text{for $p \notin ERA(i)$} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead SFRFSA\_P\_D(p, d) & \$ & P & D & 9.13.3 & Service Fee Settlement Amount paid to the ERA for Trading Day d & (\ref{SFRFSA_P_D})\\ \hline MPRFSA\_P\_D(p, d) & \$ & P & D & 9.12.4 & Market Participant Regulator Fees settlement amount charged to participant p for Trading Day d & (\ref{MPRFSA_P_D})\\ \hline ERA(d) & \{\} & G & D & Ch 11 & Set containing the ERA & (\ref{ERA})\\ \hline P(d) & \{\} & G & D & Ch 11 & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline \end{longtable} \subsubsection{Coordinator Fee Payments} \begin{dmath} \label{SFCFSA_P_D} SFCFSA\_P\_D(p, d) = \begin{dcases} \displaystyle \sum_{p \in P(d)} MPCFSA\_P\_D(p, d) & \text{for $p \in COORDINATOR(i)$} \\ 0 & \text{for $p \notin COORDINATOR(i)$} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead SFCFSA\_P\_D(p, d) & \$ & P & D & 9.13.4 & Service Fee Settlement Amount paid to the Coordinator for Trading Day d & (\ref{SFCFSA_P_D})\\ \hline MPCFSA\_P\_D(p, d) & \$ & P & D & 9.12.4A & Market Participant Coordinator Fees settlement amount charged to participant p for Trading Day d & (\ref{MPCFSA_P_D})\\ \hline COORDINATOR(d) & \{\} & G & D & Ch 11 & Set containing the Coordinator & (\ref{COORDINATOR})\\ \hline P(d) & \{\} & G & D & Ch 11 & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline \end{longtable} \subsection{Default Levy Adjustment} By the end of the second month following the end of a Financial Year, AEMO must re-allocate any Default Levies raised during that Financial Year. Default Levy Adjustment is split into two parts: \begin{itemize} \item Payment to a Participant for re-allocation of Default Levies raised during the most recently ended Financial Year. \item Charge to a Participant for re-allocation of Default Levies raised during the most recently ended Financial Year. \end{itemize} \begin{dmath} \label{DLASA_P_D} DLASA\_P\_D(p, d) = DLAP\_P\_D(p, d) - DLAC\_P\_D(p, d) \end{dmath} \begin{dmath} \label{DLAP_P_D} DLAP\_P\_D(p, d) = \frac{max(0, DLA\_P\_W(p, w))}{7} \end{dmath} \begin{dmath} \label{DLAC_P_D} DLAC\_P\_D(p, d) = \frac{-min(0, DLA\_P\_W(p, w))}{7} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead DLASA\_P\_D(p, d) & \$ & P & D & 9.20.11(e) & Default Levy Adjustment settlement amount for participant p in Trading Day d & (\ref{DLASA_P_D}) \\ \hline DLAP\_P\_D(p, d) & \$ & P & D & 9.20.11(d) & The amount participant p is paid in Trading Day d for re-allocation of Default Levies raised during the most recently ended Financial Year & (\ref{DLAP_P_D}) \\ \hline DLAC\_P\_D(p, d) & \$ & P & D & 9.20.11(d) & The amount participant p is charged in Trading Day d for re-allocation of Default Levies raised during the most recently ended Financial Year & (\ref{DLAC_P_D}) \\ \hline DLA\_P\_W(p, w) & \$ & P & W0 & 9.20.11(d) & The Default Levy adjustment (including GST) to put participant p in the position it would have been in had it paid the amount determined under clause 9.20.11(b) instead of the amounts actually paid under clause 9.20.8 applicable in Trading Week w & I \\ \hline \end{longtable} \subsection{GST} GST is charged for the provision of eligible goods and services. The Variable Categorisation section outlines which statement summary variables (of Trading Day granularity) have GST applied and which are exempt. The interval-equivalent variables are identified in the sets used in the equations below.\\ \begin{dmath} \label{GST_P_D} GST\_P\_D(p, d) = GSTP\_P\_D(p, d) - GSTC\_P\_D(p, d) \end{dmath} \begin{dmath} \label{GSTP_P_D} GSTP\_P\_D(p, d) = GST\_G\_D(d) \times \displaystyle \sum_{v \in PGST(d)} v(p, d) \end{dmath} \begin{dmath} \label{GSTC_P_D} GSTC\_P\_D(p, d) = GST\_G\_D(d) \times \displaystyle \sum_{v \in CGST(d)} v(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead GST\_P\_D(p, d) & \$ & P & D & 9.1.3 & Net GST paid/charged to participant p for Trading Day d & (\ref{GST_P_D})\\ \hline GSTP\_P\_D(p, d) & \$ & P & D & 9.1.3 & GST paid to participant p in Trading Day d & (\ref{GSTP_P_D})\\ \hline GSTC\_P\_D(p, d) & \$ & P & D & 9.1.3 & GST charged to participant p in Trading Day d & (\ref{GSTC_P_D})\\ \hline GST\_G\_D(d) & & G & D & Ch 11 & GST rate for Trading Day d & I\\ \hline PGST(d) & \{\} & G & D & 9.1.3 & Set of all variables which are payments to which GST applies in Trading Day d & I\\ \hline CGST(d) & \{\} & G & D & 9.1.3 & Set of all variables which are charges to which GST applies in Trading Day d & I\\ \hline I(d) & \{\} & G & D & Ch 11 & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtable} \subsection{Interest} Interest is paid/charged in the WEM for two reasons: \begin{itemize} \item Interest paid/charged as part of the Adjustment Process [MR 9.1.3] \item Interest paid on security deposits [MR 2.38.5, 4.13.6, 4.13.14, 4.13A.13, and 4.13A.19] \end{itemize} The payment of interest on security deposits is handled separate to that outlined in this formulation.\\ \begin{dmath} \label{NETINT_P_D} NETINT\_P\_D(p, d) = INTP\_P\_D(p, d) - INTC\_P\_D(p, d) \end{dmath} \begin{dmath} \label{INTP_P_D} INTP\_P\_D(p, d) = max(0, INT\_P\_D(p, d)) \end{dmath} \begin{dmath} \label{INTC_P_D} INTC\_P\_D(p, d) = -min(0, INT\_P\_D(p, d)) \end{dmath} \begin{dmath} \label{INT_P_D} INT\_P\_D(p, d) = INT1\_P\_D(p, d) + INT2\_P\_D(p, d) + INT3\_P\_D(p, d) \end{dmath} \begin{dmath} \label{INT1_P_D} INT1\_P\_D(p, d) = \begin{dcases} (NOINT\_P\_D(p, d) - NOINT0\_P\_D(p, d)) & \text{for $Adj1NULLFlag\_G\_W(d) = 1$}\\ &\ \text{and $Adj0NULLFlag\_G\_W(d) = 0$}\\ \times \displaystyle \sum_{j \in INTDAYS1(d)}\frac{BBR\_G\_D(j)}{365} & \\ \\ (NOINT1\_P\_D(p, d) - NOINT0\_P\_D(p, d)) & \text{otherwise}\\ \times \displaystyle \sum_{j \in INTDAYS1(d)}\frac{BBR\_G\_D(j)}{365} & \\ \end{dcases} \end{dmath} \begin{dmath} \label{INT2_P_D} INT2\_P\_D(p, d) = \begin{dcases} (NOINT\_P\_D(p, d) - NOINT1\_P\_D(p, d)) & \text{for $Adj2NULLFlag\_G\_W(d) = 1$}\\ &\ \text {and $Adj1NULLFlag\_G\_W(d) = 0$}\\ \times \displaystyle \sum_{j \in INTDAYS2(d)}\frac{BBR\_G\_D(j)}{365} & \\ \\ (NOINT2\_P\_D(p, d) - NOINT1\_P\_D(p, d)) & \text{otherwise}\\ \times \displaystyle \sum_{j \in INTDAYS2(d)}\frac{BBR\_G\_D(j)}{365} & \\ \end{dcases} \end{dmath} \begin{dmath} \label{INT3_P_D} INT3\_P\_D(p, d) = \begin{dcases} (NOINT\_P\_D(p, d) - NOINT2\_P\_D(p, d)) & \text{for $Adj3NULLFlag\_G\_W(d) = 1$}\\ &\ \text{and $Adj2NULLFlag\_G\_W(d) = 0$}\\ \times \displaystyle \sum_{j \in INTDAYS3(d)}\frac{BBR\_G\_D(j)}{365} & \\ \\ (NOINT3\_P\_D(p, d) - NOINT2\_P\_D(p, d)) & \text{otherwise}\\ \times \displaystyle \sum_{j \in INTDAYS3(d)}\frac{BBR\_G\_D(j)}{365} & \\ \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead NETINT\_P\_D(p, d) & \$ & P & D & 9.1.4 & Net interest paid/charged to participant p for Trading Day d & (\ref{NETINT_P_D})\\ \hline INTP\_P\_D(p, d) & \$ & P & D & 9.1.4 & Total interest paid to participant p for Trading Day d & (\ref{INTP_P_D})\\ \hline INTC\_P\_D(p, d) & \$ & P & D & 9.1.4 & Total interest charged to participant p for Trading Day d & (\ref{INTC_P_D})\\ \hline INT\_P\_D(p, d) & \$ & P & D & 9.1.4 & Total interest paid/charged to participant p for Trading Day d & (\ref{INT_P_D})\\ \hline INT1\_P\_D(p, d) & \$ & P & D & 9.1.4 & Interest accrued due to variations between the adjustment 1 Settlement Statement and the initial Settlement Statement for participant p for Trading Day d & (\ref{INT1_P_D})\\ \hline INT2\_P\_D(p, d) & \$ & P & D & 9.1.4 & Interest accrued due to variations between the adjustment 2 Settlement Statement and the adjustment 1 Settlement Statement for participant p for Trading Day d & (\ref{INT2_P_D})\\ \hline INT3\_P\_D(p, d) & \$ & P & D & 9.1.4 & Interest accrued due to variations between the adjustment 3 Settlement Statement and the adjustment 2 Settlement Statement for participant p for Trading Day d & (\ref{INT3_P_D})\\ \hline BBR\_G\_D(d) & & G & D & Ch 11 & Annual Bank Bill Rate applicable to Trading Day d & I\\ \hline NOINT\_P\_D(p, d) & \$ & P & D & & Total settlement amount (including GST, excluding interest) for participant p in Trading Day d & (\ref{NOINT_P_D})\\ \hline NOINT0\_P\_D(p, d) & \$ & P & D & & Total settlement amount for (including GST, excluding interest) for participant p in Trading Day d as published in initial Non-STEM Settlement Statement & I\\ \hline NOINT1\_P\_D(p, d) & \$ & P & D & & Total settlement amount for (including GST, excluding interest) for participant p in Trading Day d as published in adjustment 1 Settlement Statement & I\\ \hline NOINT2\_P\_D(p, d) & \$ & P & D & & Total settlement amount for (including GST, excluding interest) for participant p in Trading Day d as published in adjustment 2 Settlement Statement & I\\ \hline NOINT3\_P\_D(p, d) & \$ & P & D & & Total settlement amount for (including GST, excluding interest) for participant p in Trading Day d as published in adjustment 3 Settlement Statement & I\\ \hline INTDAYS1(w) & \{\} & G & W0 & 9.1.4 & Set of days from (and including) the settlement day associated with the original Settlement Statement up to (but excluding) settlement day for adjustment 1 Settlement Statement for Trading Week w & I\\ \hline INTDAYS2(w) & \{\} & G & W0 & 9.1.4 & Set of days from (and including) the settlement day associated with the original Settlement Statement up to (but excluding) settlement day for adjustment 2 Settlement Statement for Trading Week w & I\\ \hline INTDAYS3(w) & \{\} & G & W0 & 9.1.4 & Set of days from (and including) the settlement day associated with the original Settlement Statement up to (but excluding) settlement day for adjustment 3 Settlement Statement for Trading Week w & I\\ \hline Adj0NULLFlag\_G\_W(w) & Flag & G & W0 & 9.1.4 & Flag that is 1 when settlement amounts (as published in the initial Settlement Statements) are unavailable for Trading Week w, and 0 otherwise & I\\ \hline Adj1NULLFlag\_G\_W(w) & Flag & G & W0 & 9.1.4 & Flag that is 1 when settlement amounts (as published in adjustment 1 Settlement Statements) are unavailable for Trading Week w, and 0 otherwise & I\\ \hline Adj2NULLFlag\_G\_W(w) & Flag & G & W0 & 9.1.4 & Flag that is 1 when settlement amounts (as published in adjustment 2 Settlement Statements) are unavailable for Trading Week w, and 0 otherwise & I\\ \hline Adj3NULLFlag\_G\_W(w) & Flag & G & W0 & 9.1.4 & Flag that is 1 when settlement amounts (as published in adjustment 3 Settlement Statements) are unavailable for Trading Week w, and 0 otherwise & I\\ \hline \end{longtable} \subsection{Estimation} Prudential calculations require the estimation of exposure before all inputs are known.\\ When estimating settlement data for prudentials, AEMO does not modify settlement equations, but instead estimates inputs which are not known at the time of calculation. This section details the methodology for estimating non-metering settlement inputs (refer to Section 3.3 for the methodology for estimating metering inputs).\\ When undertaking a settlement run, no inputs are estimated, as required under the rules.\\ \begin{dmath} \label{estMAXTEMP_F_D} estMAXTEMP\_F\_D(f, d) = \begin{dcases} MAXTEMP\_F\_D(f, d) & \text{if $ESTIMATIONFlag\_G\_W(d) = 0$}\\ & \text{or $TEMPNullFlag\_G\_D(d) = 0$}\\ 25 \degree C & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{estIRCR0_P_M} estIRCR0\_P\_M(p, m) = \begin{dcases} IRCR0\_P\_M(p, m) & \text{if $ESTIMATIONFlag\_G\_W(d) = 0$}\\ & \text{or $IRCR0NullFlag\_G\_M(m) = 0$}\\ IRCRindicative\_P\_M(p, m) & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{estRCOQ_F_I} estRCOQ\_F\_I(f, i) = \begin{dcases} RCOQ\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_W(d) = 0$}\\ & \text{or $RCOQFINullFlag\_F\_D(i) = 0$}\\ STEMRCOQ\_F\_I(f, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{estRCOQ_SCC_DI} estRCOQ\_SCC\_DI(scc, di) = \begin{dcases} RCOQ\_SCC\_DI(scc, di) & \text{if $ESTIMATIONFlag\_G\_W(d) = 0$}\\ & \text{or $RCOQSCCDINullFlag\_SCC\_D(di) = 0$}\\ STEMRCOQ\_SCC\_DI(scc, di) & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{estRCOQ_F_DI} estRCOQ\_F\_DI(f, di) = \begin{dcases} RCOQ\_F\_DI(f, di) & \text{if $ESTIMATIONFlag\_G\_W(d) = 0$}\\ & \text{or $RCOQFDINullFlag\_F\_D(di) = 0$}\\ STEMRCOQ\_F\_DI(f, di) & \text{otherwise} \end{dcases} \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead estMAXTEMP\_F\_D(f, d) & \degree C & F & D & & Daily maximum temperature (including estimation) of the Energy Producing System associated with Facility f for Trading Day d & (\ref{estMAXTEMP_F_D})\\ \hline estIRCR0\_P\_M(p, m) & MW & P & M & & Individual Reserve Capacity Requirement (prior to any adjustments) (including estimation) for participant p for Trading Month m & (\ref{estIRCR0_P_M})\\ \hline estRCOQ\_F\_I(f, i) & MW & F & I & Ch 11 & Reserve Capacity Obligation Quantity (including estimation) of Facility f in Trading Interval i & (\ref{estRCOQ_F_I})\\ \hline estRCOQ\_SCC\_DI(scc, di) & MW & SCC & DI & & Reserve Capacity Obligation Quantity (including estimation) for Separately Certified Component scc in Dispatch Interval di & (\ref{estRCOQ_SCC_DI})\\ \hline estRCOQ\_F\_DI(f, di) & MW & F & DI & & Reserve Capacity Obligation Quantity (including estimation) for Facility f in Dispatch Interval di & (\ref{estRCOQ_F_DI})\\ \hline \footnotesize{ESTIMATIONFlag\_G\_W(w)} & Flag & G & W0 & & Flag that is 1 when estimation is permitted for Trading Week w, and 0 otherwise & I\\ \hline IRCR0\_P\_M(p, m) & MW & P & M & 4.28.7 & Individual Reserve Capacity Requirement (prior to any adjustments) for participant p for Trading Month m & I\\ \hline IRCRindicative\_P\_M(p, m) & MW & P & M & 4.28.6 & Indicative Individual Reserve Capacity Requirement for participant p for Trading Month m & I\\ \hline IRCR0NullFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when the Individual Reserve Capacity Requirements have not been published for Trading Month m, and 0 otherwise & I\\ \hline MAXTEMP\_F\_D(f, d) & \degree C & F & D & 2.30B.3(b)ii & Daily maximum temperature of the Energy Producing System associated with Facility f for Trading Day d & I\\ \hline RCOQ\_F\_I(f, i) & MW & F & I & Ch 11 & Reserve Capacity Obligation Quantity of Facility f in Trading Interval i & I\\ \hline RCOQFINullFlag\_F\_D(d) & Flag & F & D & & Flag that is 1 when the RCOQ\_F\_I values for Facility f are unavailable for Trading Day d, and 0 otherwise & I\\ \hline RCOQ\_SCC\_DI(scc, di) & MW & SCC & DI & & Reserve Capacity Obligation Quantity for Separately Certified Component scc in Dispatch Interval di & I\\ \hline \footnotesize{RCOQSCCDINullFlag\_SCC\_D(d)} & Flag & SCC & D & & Flag that is 1 when the RCOQ\_SCC\_DI values for Separately Certified Component scc are unavailable for Trading Day d, and 0 otherwise & I\\ \hline RCOQ\_F\_DI(f, di) & MW & F & DI & & Reserve Capacity Obligation Quantity of Facility f in Dispatch Interval di & I\\ \hline RCOQFDINullFlag\_F\_D(d) & Flag & F & D & & Flag that is 1 when the RCOQ\_F\_DI values for Facility f are unavailable for Trading Day d, and 0 otherwise & I\\ \hline STEMRCOQ\_F\_I(f, i) & MW & F & I & & STEM Reserve Capacity Obligation Quantity at the time of the Bilateral Submission Cutoff for Facility f in Trading Interval i & I\\ \hline STEMRCOQ\_SCC\_DI(scc, di) & MW & SCC & DI & & STEM Reserve Capacity Obligation Quantity at the time of the Bilateral Submission Cutoff for Separately Certified Component scc in Dispatch Interval di & I\\ \hline STEMRCOQ\_F\_DI(f, di) & MW & F & DI & & STEM Reserve Capacity Obligation Quantity at the time of the Bilateral Submission Cutoff for Facility f in Dispatch Interval di & I\\ \hline TEMPNullFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when the daily maximum temperatures are unavailable for Trading Day d, and 0 otherwise & I\\ \hline \end{longtable} \section{Payments and Charges} Payments refer to amounts that are paid by AEMO to the participant and charges refer to amounts that are paid by the participant to AEMO. Each of these amounts may change between positive and negative values as a result of the Adjustment Process. \subsection{Variable Categorisation} The table below outlines the variables that are payments ('P') or charges ('C'), whether GST is applicable ('Y' or 'N'), and the description of the line item as it appears on the Invoice. \begin{longtable}{|p{4.1cm}|p{0.9cm}|p{0.9cm}|p{1.3cm}|p{0.9cm}|p{7.3cm}|} \rowcolor{violet} \color{white}Variable & \color{white}P/C & \color{white}GST & \color{white}Rule & \color{white}Ref & \color{white}Invoice line item description\\ \hline \endhead STEMSAS\_P\_D(p, d) & P & Y & 9.7 & (\ref{STEMSAS_P_D}) & Payment for STEM energy sold\\ \hline STEMSAD\_P\_D(p, d) & C & Y & 9.7 & (\ref{STEMSAD_P_D}) & Charge for STEM energy purchased\\ \hline ETSA\_P\_D(p, d) & P & Y & 9.9.4 & (\ref{ETSA_P_D}) & Payment for Real-Time Market energy sold\\ \hline ETDA\_P\_D(p, d) & C & Y & 9.9.4 & (\ref{ETDA_P_D}) & Charge for Real-Time Market energy purchased \\ \hline EUP\_P\_D(p, d) & P & Y & 9.9.6 & (\ref{EUP_P_D}) & Payment for Energy Uplift Payments\\ \hline EUR\_P\_D(p, d) & C & Y & 9.9.15 & (\ref{EUR_P_D}) & Charge for Energy Uplift Payments\\ \hline OCP\_P\_D(p, d) & P & Y & 9.11.3 & (\ref{OCP_P_D}) & Payment for Outage Compensation\\ \hline OCR\_P\_D(p, d) & C & Y & 9.11.6 & (\ref{OCR_P_D}) & Charge for Outage Compensation\\ \hline MPDA\_P\_D(p, d) & P & Y & 9.11A.4 & (\ref{MPDA_P_D}) & Payment for Market Participant Deficit Amount\\ \hline MPEA\_P\_D(p, d) & C & Y & 9.11A.5 & (\ref{MPEA_P_D}) & Charge for Market Participant Excess Amount\\ \hline MSEArebate\_P\_D(p, d) & P & Y & 9.11A.9 & (\ref{MSEArebate_P_D}) & Payment for market suspension excess amount\\ \hline MSDAcharge\_P\_D(p, d) & C & Y & 9.11A.6 & (\ref{MSDAcharge_P_D}) & Charge for market suspension deficit amount\\ \hline CRpayment\_P\_D(p, d) & P & Y & 9.10.4 & (\ref{CRpayment_P_D}) & Payment for Contingency Reserve Raise\\ \hline CLpayment\_P\_D(p, d) & P & Y & 9.10.8 & (\ref{CLpayment_P_D}) & Charge for Contingency Reserve Raise\\ \hline RoCoFpayment\_P\_D(p, d) & P & Y & 9.10.12 & (\ref{RoCoFpayment_P_D}) & Payment for RoCoF Control Service\\ \hline RRpayment\_P\_D(p, d) & P & Y & 9.10.20 & (\ref{RRpayment_P_D}) & Payment for Regulation Raise\\ \hline RLpayment\_P\_D(p, d) & P & Y & 9.10.20 & (\ref{RLpayment_P_D}) & Payment for Regulation Lower\\ \hline SRSpayment\_P\_D(p, d) & P & Y & 9.10.25 & (\ref{SRSpayment_P_D}) & Payment for System Restart Service\\ \hline NCESSpayment\_P\_D(p, d) & P & Y & 9.10.27A & (\ref{NCESScharge_P_D}) & Payment for NCESS\\ \hline FCESSUpayment\_P\_D(p,d) & P & Y & 9.10.3A & (\ref{FCESSUpayment_P_D}) & Payment for FCESS Uplift Payments\\ \hline CRcharge\_P\_D(p, d) & C & Y & 9.10.29 & (\ref{CRcharge_P_D}) & Charge for Contingency Reserve Raise\\ \hline CLcharge\_P\_D(p, d) & C & Y & 9.10.31 & (\ref{CLcharge_P_D}) & Charge for Contingency Reserve Lower\\ \hline RoCoFcharge\_P\_D(p, d) & C & Y & 9.10.33 & (\ref{RoCoFcharge_P_D}) & Charge for RoCoF Control Service\\ \hline RRcharge\_P\_D(p, d) & C & Y & 9.10.35 & (\ref{RRcharge_P_D}) & Charge for Regulation Raise\\ \hline RLcharge\_P\_D(p, d) & C & Y & 9.10.35 & (\ref{RLcharge_P_D}) & Charge for Regulation Lower\\ \hline SRScharge\_P\_D(p, d) & C & Y & 9.10.40 & (\ref{SRScharge_P_D}) & Charge for System Restart Service\\ \hline NCESScharge\_P\_D(p, d) & C & Y & 9.10.44 & (\ref{NCESScharge_P_D}) & Charge for NCESS\\ \hline CCSA\_P\_D(p, d) & P & Y & 9.8.3(b) & (\ref{CCSA_P_D}) & Payment for non-allocated Capacity Credits\\ \hline IMLR\_P\_D(p, d) & C & Y & \footnotesize{4.29.3(dA)} & (\ref{IMLR_P_D}) & Charge for Intermittent Load Refunds\\ \hline SUPCAPSA\_P\_D(p, d) & P & Y & 9.8.3(d) & I & Payment for Supplementary Capacity Contracts\\ \hline CCR\_P\_D(p, d) & C & Y & 4.6.2E & (\ref{CCR_P_D}) & Charge for Capacity Cost Refund\\ \hline CCAOASA\_P\_D(p, d) & P & Y & 9.8.3(f) & (\ref{CCAOASA_P_D}) & \scalebox{0.9}{Payment for Capacity Credit Allocation over-allocation}\\ \hline TRCC\_P\_D(p, d) & C & Y & 9.8.4(a) & (\ref{TRCC_P_D}) & Charge for Targeted Reserve Capacity Cost\\ \hline SRCC\_P\_D(p, d) & C & Y & 9.8.4(b) & (\ref{SRCC_P_D}) & Charge for Shared Reserve Capacity Cost\\ \hline MPMFSA\_P\_D(p, d) & C & N & 9.12.3 & (\ref{MPMFSA_P_D}) & Charge for Market Participant Market Fees\\ \hline MPRFSA\_P\_D(p, d) & C & N & 9.12.4 & (\ref{MPRFSA_P_D}) & Charge for Market Participant Regulator Fees\\ \hline MPCFSA\_P\_D(p, d) & C & N & 9.12.4A & (\ref{MPCFSA_P_D}) & Charge for Market Participant Coordinator Fees\\ \hline SFMFSA\_P\_D(p, d) & P & N & 9.13.2 & (\ref{SFMFSA_P_D}) & Payment for Service Fee Market Fees\\ \hline SFRFSA\_P\_D(p, d) & P & N & 9.13.3 & (\ref{SFRFSA_P_D}) & Payment for Service Fee Regulator Fees\\ \hline SFCFSA\_P\_D(p, d) & P & N & 9.13.4 & (\ref{SFCFSA_P_D}) & Payment for Service Fee Coordinator Fees\\ \hline DLAP\_P\_D(p, d) & P & N & 9.20.11(e) & (\ref{DLAP_P_D}) & Payment for reallocation of Default Levies\\ \hline DLAC\_P\_D(p, d) & C & N & 9.20.11(e) & (\ref{DLAC_P_D}) & Charge for reallocation of Default Levies\\ \hline GSTP\_P\_D(p, d) & P & N & 9.1.3 & (\ref{GSTP_P_D}) & Payment for GST\\ \hline GSTC\_P\_D(p, d) & C & N & 9.1.3 & (\ref{GSTC_P_D}) & Charge for GST\\ \hline INTP\_P\_D(p, d) & P & N & 9.1.4 & (\ref{INTP_P_D}) & Payment for Interest\\ \hline INTC\_P\_D(p, d) & C & N & 9.1.4 & (\ref{INTC_P_D}) & Charge for Interest\\ \hline \end{longtable} \subsection{Zero Sum Groups} The table below assists in understanding how the payments and charges are related. The categories may not be explicitly written this way in the WEM Rules, however representing them this way allows the zero sum concept to be demonstrated conceptually. The only non-zero sum component within the settlement summary variables is when AEMO is required to draw down on Reserve Capacity Security or DSP Reserve Capacity Security, which are represented by $RCSD\_G\_D(d)$ and $DSPRCSD\_G\_D(d)$, respectively. This is because the provision of Reserve Capacity Security or DSP Reserve Capacity Security by a Market Participant to AEMO occurs outside of settlement but distribution of the draw down on this security occurs within settlement. \begin{longtable}{|p{5.4cm}|p{5.2cm}|p{0.5cm}|p{5.2cm}|} \rowcolor{violet} \color{white}Category & \color{white}Payments & \color{white}= & \color{white}Charges\\ \hline \endhead STEM & STEMSAS\_G\_D(d) & = & STEMSAD\_G\_D(d)\\ \hline Energy & ETSA\_G\_D(d) & = & ETDA\_G\_D(d)\\ \hline Energy Uplifts & EUP\_G\_D(d) & = & EUR\_G\_D(d)\\ \hline Changed Outage Compensation & OCP\_G\_D(d) & = & OCR\_G\_D(d)\\ \hline Market Suspension Excess & MSEArebate\_G\_D(d) & = & MPEA\_G\_D(d)\\ \hline Market Suspension Deficit & MPDA\_G\_D(d) & = & MSDAcharge\_G\_D(d)\\ \hline Frequency Co-optimised Essential System Services & CRpayment\_G\_D(d) + \newline CLpayment\_G\_D(d) + \newline RRpayment\_G\_D(d) + \newline RLpayment\_G\_D(d) + \newline RoCoFpayment\_G\_D(d) + \newline FCESSUpayment\_G\_D(d) & = & CRcharge\_G\_D(d) + \newline CLcharge\_G\_D(d) + \newline RRcharge\_G\_D(d) + \newline RLcharge\_G\_D(d) + \newline RoCoFcharge\_G\_D(d)\\ \hline NCESS Contracts excluding Peak Capacity & NCESSpayment\_G\_D(d) - \newline PeakNCESSpayment\_G\_D(d)\newline & = & NCESScharge\_G\_D(d)\\ \hline System Restart Service & SRSpayment\_G\_D(d) & = & SRScharge\_G\_D(d)\\ \hline Reserve Capacity & CCSA\_G\_D(d) + \newline CCAOASA\_G\_D(d) + \newline SUPCAPSA\_G\_D(d) + \newline PeakNCESSpayment\_G\_D(d) & = & TRCC\_G\_D(d) + \newline SRCC\_G\_D(d) + \newline IMLR\_G\_D(d) + \newline RCSD\_G\_D(d) + \newline DSPRCSD\_G\_D(d) + \newline CCR\_G\_D(d)\\ \hline Market Fees & SFMFSA\_G\_D(d) & = & MPMFSA\_G\_D(d)\\ \hline Regulator Fees & SFRFSA\_G\_D(d) & = & MPRFSA\_G\_D(d)\\ \hline Coordinator Fees & SFCFSA\_G\_D(d) & = & MPCFSA\_G\_D(d)\\ \hline Default Levy Adjustments & DLAP\_G\_D(d) & = & DLAC\_G\_D(d)\\ \hline GST & GSTP\_G\_D(d) & = & GSTC\_G\_D(d)\\ \hline Interest & INTP\_G\_D(d) & = & INTC\_G\_D(d)\\ \hline \end{longtable} \section{Settlements} Daily outputs from the common calculation engine may be aggregated by the participant to achieve the required settlement outputs. \subsection{Weekly Settlement Amount} \begin{dmath} \label{TOTAL_P_W} TOTAL\_P\_W(p, w) = \displaystyle \sum_{d \in D(w)} TOTAL\_P\_D(p, d) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead TOTAL\_P\_W(p, w) & \$ & P & W0 & & Total settlement amount (including GST and interest) for participant p in Trading Week w & (\ref{TOTAL_P_W})\\ \hline TOTAL\_P\_D(p, d) & \$ & P & D & & Total settlement amount (including GST and interest) for participant p in Trading Day d & (\ref{TOTAL_P_D})\\ \hline D(w) & \{\} & G & W0 & Ch 11 & Set of Trading Days in Trading Week w & I\\ \hline \end{longtable} \section{Prudentials} Trading Margin calculations are performed on a daily basis to manage prudential risk. An input to these equations are the outputs of the settlement calculations documented in previous sections. \subsection{Trading Margin} \begin{dmath} \label{TM_P_D} TM\_P\_D(p, d) = TL\_P\_D(p, d) - OA\_P\_D(p, d) \end{dmath} \begin{dmath} \label{TL_P_D} TL\_P\_D(p, d) = PF\_G\_D(d) \times CREDSUP\_P\_D(p, d) \end{dmath} \begin{dmath} \label{PF_G_D} PF\_G\_D(d) = 0.87 \end{dmath} \begin{dmath} \label{OA_P_D} OA\_P\_D(p, d) = CEE\_P\_D(p, d) + INP\_P\_D(p, d) - PP\_P\_D(p, d) \end{dmath} \begin{dmath} \label{CEE_P_D} CEE\_P\_D(p, d) = \displaystyle \sum_{j \in EXPDAYS(d)} EE\_P\_D(p, j) \end{dmath} \begin{dmath} \label{EE_P_D} EE\_P\_D(p, d) = -(TOTAL\_P\_D(p, d) - TOTALprev\_P\_D(p, d)) \end{dmath} \begin{longtable}{|p{4cm}|p{0.9cm}|p{0.6cm}|p{0.6cm}|p{1.8cm}|p{6cm}|p{0.9cm}|} \rowcolor{violet} \color{white}Variable & \color{white}Units & \color{white}SC & \color{white}GR & \color{white}Rule & \color{white}Description & \color{white}Ref\\ \hline \endhead TM\_P\_D(p, d) & \$ & P & D & 2.41.1 & Trading Margin for participant p for Trading Day d & (\ref{TM_P_D})\\ \hline TL\_P\_D(p, d) & \$ & P & D & 2.39.1 & Trading Limit for participant p for Trading Day d & (\ref{TL_P_D})\\ \hline CREDSUP\_P\_D(p, d) & \$ & P & D & 2.38 & Credit Support held by AEMO on behalf of participant p on Trading Day d & I\\ \hline PF\_G\_D(d) & & G & D & 2.39.2 & Prudential factor on Trading Day d & (\ref{PF_G_D})\\ \hline OA\_P\_D(p, d) & \$ & P & D & 2.40.1 & Outstanding Amount for participant p on Trading Day d & (\ref{OA_P_D})\\ \hline INP\_P\_D(p, d) & \$ & P & D & & Amount of money participant p owes for which a Settlement Statement has been issued, but payment has not been made, as calculated on Trading Day d & I\\ \hline PP\_P\_D(p, d) & \$ & P & D & 2.40.1(c) & Prepayments held by AEMO on behalf of participant p on Trading Day d & I\\ \hline CEE\_P\_D(p, d) & \$ & P & D & & Cumulative Estimated exposure for participant p as calculated on Trading Day d & (\ref{CEE_P_D})\\ \hline EE\_P\_D(p, d) & \$ & P & D & & Estimated exposure for participant p relating to Trading Day d & (\ref{EE_P_D})\\ \hline TOTALprev\_P\_D(p, d) & \$ & P & D & & Total Settlement Statement amount (including GST and interest) for participant p in Trading Day d from most recently published Settlement Statement for Trading Day d & I\\ \hline TOTAL\_P\_D(p, d) & \$ & P & D & & Total settlement amount (including GST and interest) for participant p in Trading Day d & (\ref{TOTAL_P_D})\\ \hline EXPDAYS(d) & \{\} & G & D & & Set of Trading Days that have not yet had a Settlement Statement issued, up to and including Trading Day d-1 & I\\ \hline \end{longtable} \end{document}